|
@@ -0,0 +1,453 @@
|
|
1
|
+#include "EEPROM.h"
|
|
2
|
+
|
|
3
|
+#include <ZUNO_OneWire.h>
|
|
4
|
+#include <ZUNO_DS18B20.h>
|
|
5
|
+
|
|
6
|
+#define PIN_RELAY_BURNER 12
|
|
7
|
+#define PIN_RELAY_WATER_LOAD 11
|
|
8
|
+#define PIN_RELAY_WATER_RECYCLING 10
|
|
9
|
+#define PIN_RELAY_HEAT_PUMP_1 9
|
|
10
|
+
|
|
11
|
+#define PIN_INPUT_BURNER_RUNNING 16
|
|
12
|
+#define PIN_INPUT_BURNER_ALARM 17
|
|
13
|
+#define PIN_INPUT_BOILER_ALARM 18
|
|
14
|
+
|
|
15
|
+#define PIN_ONEWIRE 15
|
|
16
|
+
|
|
17
|
+#define EEPROM_MAGIC_VALUE 0x4242
|
|
18
|
+#define EEPROM_MAGIC_ADDR 0
|
|
19
|
+#define EEPROM_REQUESTED_TEMP_ADDR_BASE (EEPROM_MAGIC_ADDR + 2)
|
|
20
|
+#define EEPROM_THERMOSTAT_MODE_BASE (EEPROM_REQUESTED_TEMP_ADDR_BASE + 4) // req temp is 2 bytes per thermostat
|
|
21
|
+
|
|
22
|
+#define ZW_PARAM_BASE 64
|
|
23
|
+#define ZW_PARAM_UPDATE_UNSOLICITED_TIME_BASE (ZW_PARAM_BASE) // 64, 65
|
|
24
|
+#define ZW_PARAM_UPDATE_THRESHOLD_TEMP_BASE (ZW_PARAM_UPDATE_UNSOLICITED_TIME_BASE + 2) // 66, 67
|
|
25
|
+#define ZW_PARAM_MIN_CYCLE_DURATION_BASE (ZW_PARAM_UPDATE_THRESHOLD_TEMP_BASE + 2) // 68, 69
|
|
26
|
+#define ZW_PARAM_TOLERANCE_TEMP_BASE (ZW_PARAM_MIN_CYCLE_DURATION_BASE + 2) // 70, 71
|
|
27
|
+
|
|
28
|
+#define LOG_INIT() Serial.begin(9600)
|
|
29
|
+#define LOG_WRITE(x) Serial.print(x)
|
|
30
|
+#define LOG_WRITELN(x) Serial.println(x)
|
|
31
|
+
|
|
32
|
+//#define LOG_INIT()
|
|
33
|
+//#define LOG_WRITE(x)
|
|
34
|
+//#define LOG_WRITELN(x)
|
|
35
|
+
|
|
36
|
+#define DALLAS_ADDR_SIZE 8
|
|
37
|
+
|
|
38
|
+struct thermostat_t {
|
|
39
|
+ byte dallasAddress[DALLAS_ADDR_SIZE];
|
|
40
|
+ word currentTemp;
|
|
41
|
+
|
|
42
|
+ byte requestedMode;
|
|
43
|
+ word requestedTemp;
|
|
44
|
+
|
|
45
|
+ unsigned long lastZwaveReadTime;
|
|
46
|
+ word lastZwaveReadTemp;
|
|
47
|
+
|
|
48
|
+ word updateUnsolicitedTime;
|
|
49
|
+ word updateThresholdTemp;
|
|
50
|
+
|
|
51
|
+ word minCycleDuration;
|
|
52
|
+ word toleranceTemp;
|
|
53
|
+
|
|
54
|
+ bool requestHeat;
|
|
55
|
+};
|
|
56
|
+
|
|
57
|
+struct output_t {
|
|
58
|
+ int pin;
|
|
59
|
+ bool currentValue;
|
|
60
|
+ unsigned long lastChangedTime;
|
|
61
|
+};
|
|
62
|
+
|
|
63
|
+OneWire oneWire(PIN_ONEWIRE);
|
|
64
|
+DS18B20Sensor dallas(&oneWire);
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+#define THERMOSTATS_COUNT 2
|
|
68
|
+#define THERMOSTAT_HEAT_IDX 0
|
|
69
|
+#define THERMOSTAT_WATER_IDX 1
|
|
70
|
+thermostat_t thermostats[THERMOSTATS_COUNT];
|
|
71
|
+
|
|
72
|
+#define OUTPUTS_COUNT 4
|
|
73
|
+#define OUTPUT_BURNER_IDX 0
|
|
74
|
+#define OUTPUT_WATER_LOAD_IDX 1
|
|
75
|
+#define OUTPUT_WATER_RECYCLING_IDX 2
|
|
76
|
+#define OUTPUT_HEAT_PUMP_1_IDX 3
|
|
77
|
+output_t outputs[OUTPUTS_COUNT];
|
|
78
|
+
|
|
79
|
+ZUNO_SETUP_CHANNELS(
|
|
80
|
+ ZUNO_THERMOSTAT(THERMOSTAT_FLAGS_OFF | THERMOSTAT_FLAGS_HEAT, THERMOSTAT_UNITS_CELSIUS, THERMOSTAT_RANGE_POS, 10, getHeaterMode, setHeaterMode, getHeaterTemp, setHeaterTemp), // Heater
|
|
81
|
+ ZUNO_SENSOR_MULTILEVEL(ZUNO_SENSOR_MULTILEVEL_TYPE_WATER_TEMPERATURE, SENSOR_MULTILEVEL_SCALE_CELSIUS, METER_SIZE_TWO_BYTES, SENSOR_MULTILEVEL_PRECISION_TWO_DECIMALS, getHeaterCurrentTemp), // Heater temp
|
|
82
|
+ ZUNO_THERMOSTAT(THERMOSTAT_FLAGS_OFF | THERMOSTAT_FLAGS_HEAT, THERMOSTAT_UNITS_CELSIUS, THERMOSTAT_RANGE_POS, 10, getWaterMode, setWaterMode, getWaterTemp, setWaterTemp), // Water
|
|
83
|
+ ZUNO_SENSOR_MULTILEVEL(ZUNO_SENSOR_MULTILEVEL_TYPE_WATER_TEMPERATURE, SENSOR_MULTILEVEL_SCALE_CELSIUS, METER_SIZE_TWO_BYTES, SENSOR_MULTILEVEL_PRECISION_TWO_DECIMALS, getWaterCurrentTemp), // Water temp
|
|
84
|
+ ZUNO_SWITCH_BINARY(getRelayBurner, setRelayBurner), // Burner
|
|
85
|
+ ZUNO_SWITCH_BINARY(getRelayWaterLoad, setRelayWaterLoad), // Water load pump
|
|
86
|
+ ZUNO_SWITCH_BINARY(getRelayWaterRecycling, setRelayWaterRecycling), // Water recycling pump
|
|
87
|
+ ZUNO_SWITCH_BINARY(getRelayHeatPump1, setRelayHeatPump1), // Heater pump Floor 1
|
|
88
|
+ ZUNO_SENSOR_BINARY(ZUNO_SENSOR_BINARY_TYPE_GENERAL_PURPOSE, getInputBurnerRunning), // Burner running
|
|
89
|
+ ZUNO_SENSOR_BINARY(ZUNO_SENSOR_BINARY_TYPE_GENERAL_PURPOSE, getInputBurnerAlarm), // Burner alarm
|
|
90
|
+ ZUNO_SENSOR_BINARY(ZUNO_SENSOR_BINARY_TYPE_GENERAL_PURPOSE, getInputBoilerAlarm) // Boiler alarm
|
|
91
|
+);
|
|
92
|
+ZUNO_SETUP_CFGPARAMETER_HANDLER(config_parameter_changed);
|
|
93
|
+
|
|
94
|
+byte EEPROM_put(dword address, void * value, word val_size) {
|
|
95
|
+ byte res = EEPROM.put(address, value, val_size);
|
|
96
|
+ if (!res) {
|
|
97
|
+ LOG_WRITELN("EEPROM put: FAIL");
|
|
98
|
+ }
|
|
99
|
+ return res;
|
|
100
|
+}
|
|
101
|
+
|
|
102
|
+byte EEPROM_get(dword address, void * value, word val_size) {
|
|
103
|
+ byte res = EEPROM.get(address, value, val_size);
|
|
104
|
+ if (!res) {
|
|
105
|
+ LOG_WRITELN("EEPROM put: FAIL");
|
|
106
|
+ }
|
|
107
|
+ return res;
|
|
108
|
+}
|
|
109
|
+
|
|
110
|
+word abs_diff(word v1, word v2) {
|
|
111
|
+ if (v1 > v2) {
|
|
112
|
+ return v1 - v2;
|
|
113
|
+ }
|
|
114
|
+ return v2 - v1;
|
|
115
|
+}
|
|
116
|
+
|
|
117
|
+void setup() {
|
|
118
|
+ delay(2000);
|
|
119
|
+ LOG_INIT();
|
|
120
|
+ LOG_WRITELN("setup BEGIN");
|
|
121
|
+
|
|
122
|
+ pinMode(PIN_INPUT_BURNER_RUNNING, INPUT);
|
|
123
|
+ pinMode(PIN_INPUT_BURNER_ALARM, INPUT);
|
|
124
|
+ pinMode(PIN_INPUT_BOILER_ALARM, INPUT);
|
|
125
|
+
|
|
126
|
+ word magic_value[1] = {0};
|
|
127
|
+ EEPROM_get(EEPROM_MAGIC_ADDR, magic_value, sizeof(magic_value));
|
|
128
|
+ if (magic_value[0] != EEPROM_MAGIC_VALUE) {
|
|
129
|
+ LOG_WRITE("First init: ");
|
|
130
|
+ LOG_WRITELN((int)magic_value[0]);
|
|
131
|
+
|
|
132
|
+ zunoSaveCFGParam(ZW_PARAM_UPDATE_UNSOLICITED_TIME_BASE + 0, 600); // 10 min
|
|
133
|
+ zunoSaveCFGParam(ZW_PARAM_UPDATE_UNSOLICITED_TIME_BASE + 1, 600); // 10 min
|
|
134
|
+
|
|
135
|
+ zunoSaveCFGParam(ZW_PARAM_UPDATE_THRESHOLD_TEMP_BASE + 0, 50); // 0.5 °C
|
|
136
|
+ zunoSaveCFGParam(ZW_PARAM_UPDATE_THRESHOLD_TEMP_BASE + 1, 50); // 0.5 °C
|
|
137
|
+
|
|
138
|
+ zunoSaveCFGParam(ZW_PARAM_MIN_CYCLE_DURATION_BASE + 0, 60); // 1 min
|
|
139
|
+ zunoSaveCFGParam(ZW_PARAM_MIN_CYCLE_DURATION_BASE + 1, 60); // 1 min
|
|
140
|
+
|
|
141
|
+ zunoSaveCFGParam(ZW_PARAM_TOLERANCE_TEMP_BASE + 0, 2000); // 20 °C
|
|
142
|
+ zunoSaveCFGParam(ZW_PARAM_TOLERANCE_TEMP_BASE + 1, 1000); // 10 °C
|
|
143
|
+
|
|
144
|
+ word requestedTemps[2] = {8000, 3000}; // 80 °C; 30 °C
|
|
145
|
+ EEPROM_put(EEPROM_REQUESTED_TEMP_ADDR_BASE, requestedTemps, sizeof(requestedTemps));
|
|
146
|
+
|
|
147
|
+ byte modes[2] = {THERMOSTAT_MODE_OFF, THERMOSTAT_MODE_OFF};
|
|
148
|
+ EEPROM_put(EEPROM_THERMOSTAT_MODE_BASE, modes, sizeof(modes));
|
|
149
|
+
|
|
150
|
+ magic_value[0] = EEPROM_MAGIC_VALUE;
|
|
151
|
+ EEPROM_put(EEPROM_MAGIC_ADDR, magic_value, sizeof(magic_value));
|
|
152
|
+ }
|
|
153
|
+
|
|
154
|
+ byte dallasAddresses[DALLAS_ADDR_SIZE * 2];
|
|
155
|
+ byte dallasAddressesCount = dallas.findAllSensors(dallasAddresses); // TODO retry if not 2
|
|
156
|
+ LOG_WRITE("Found ");
|
|
157
|
+ LOG_WRITE(dallasAddressesCount);
|
|
158
|
+ LOG_WRITELN(" sensors");
|
|
159
|
+
|
|
160
|
+ word requestedTemps[2] = {8000, 3000};
|
|
161
|
+ EEPROM_get(EEPROM_REQUESTED_TEMP_ADDR_BASE, requestedTemps, sizeof(requestedTemps));
|
|
162
|
+ byte modes[2] = {THERMOSTAT_MODE_OFF, THERMOSTAT_MODE_OFF};
|
|
163
|
+ EEPROM_get(EEPROM_THERMOSTAT_MODE_BASE, modes, sizeof(modes));
|
|
164
|
+
|
|
165
|
+ for (int ti = 0; ti < THERMOSTATS_COUNT; ++ti) {
|
|
166
|
+ memcpy(thermostats[ti].dallasAddress, &dallasAddresses[ti * DALLAS_ADDR_SIZE], DALLAS_ADDR_SIZE);
|
|
167
|
+ thermostats[ti].currentTemp = BAD_TEMP;
|
|
168
|
+
|
|
169
|
+ thermostats[ti].requestedMode = modes[ti];
|
|
170
|
+ thermostats[ti].requestedTemp = requestedTemps[ti];
|
|
171
|
+
|
|
172
|
+ thermostats[ti].lastZwaveReadTime = 0;
|
|
173
|
+ thermostats[ti].lastZwaveReadTemp = BAD_TEMP;
|
|
174
|
+
|
|
175
|
+ thermostats[ti].updateUnsolicitedTime = zunoLoadCFGParam(ZW_PARAM_UPDATE_UNSOLICITED_TIME_BASE + ti);
|
|
176
|
+ thermostats[ti].updateThresholdTemp = zunoLoadCFGParam(ZW_PARAM_UPDATE_THRESHOLD_TEMP_BASE + ti);
|
|
177
|
+
|
|
178
|
+ thermostats[ti].minCycleDuration = zunoLoadCFGParam(ZW_PARAM_MIN_CYCLE_DURATION_BASE + ti);
|
|
179
|
+ thermostats[ti].toleranceTemp = zunoLoadCFGParam(ZW_PARAM_TOLERANCE_TEMP_BASE + ti);
|
|
180
|
+
|
|
181
|
+ thermostats[ti].requestHeat = false;
|
|
182
|
+ }
|
|
183
|
+
|
|
184
|
+ outputs[OUTPUT_BURNER_IDX].pin = PIN_RELAY_BURNER;
|
|
185
|
+ outputs[OUTPUT_WATER_LOAD_IDX].pin = PIN_RELAY_WATER_LOAD;
|
|
186
|
+ outputs[OUTPUT_WATER_RECYCLING_IDX].pin = PIN_RELAY_WATER_RECYCLING;
|
|
187
|
+ outputs[OUTPUT_HEAT_PUMP_1_IDX].pin = PIN_RELAY_HEAT_PUMP_1;
|
|
188
|
+ for (int oi = 0; oi < OUTPUTS_COUNT; ++oi) {
|
|
189
|
+ outputs[oi].currentValue = 0;
|
|
190
|
+ outputs[oi].lastChangedTime = 0;
|
|
191
|
+ pinMode(outputs[oi].pin, OUTPUT);
|
|
192
|
+ digitalWrite(outputs[oi].pin, 0);
|
|
193
|
+ }
|
|
194
|
+ LOG_WRITELN("setup END");
|
|
195
|
+}
|
|
196
|
+
|
|
197
|
+void updateValues() {
|
|
198
|
+ // Temp sensors
|
|
199
|
+ for (int ti = 0; ti < THERMOSTATS_COUNT; ++ti) {
|
|
200
|
+ word newValue = BAD_TEMP;
|
|
201
|
+ for (int j = 0; j < 3 && (newValue == BAD_TEMP || newValue == 0); ++j) {
|
|
202
|
+ newValue = dallas.getTemperature(thermostats[ti].dallasAddress) * 100;
|
|
203
|
+ }
|
|
204
|
+ thermostats[ti].currentTemp = newValue;
|
|
205
|
+
|
|
206
|
+ if (thermostats[ti].requestedMode == THERMOSTAT_MODE_HEAT) {
|
|
207
|
+ if (thermostats[ti].currentTemp <= thermostats[ti].requestedTemp - thermostats[ti].toleranceTemp && !thermostats[ti].requestHeat) { // TODO Check overflow
|
|
208
|
+ LOG_WRITE("Thermostat ");
|
|
209
|
+ LOG_WRITE(ti);
|
|
210
|
+ LOG_WRITE(" is too low: ");
|
|
211
|
+ LOG_WRITE((int)thermostats[ti].currentTemp);
|
|
212
|
+ LOG_WRITE(" << ");
|
|
213
|
+ LOG_WRITELN((int)thermostats[ti].requestedTemp);
|
|
214
|
+ thermostats[ti].requestHeat = true;
|
|
215
|
+ }
|
|
216
|
+ else if (thermostats[ti].currentTemp >= thermostats[ti].requestedTemp && thermostats[ti].requestHeat) {
|
|
217
|
+ LOG_WRITE("Thermostat ");
|
|
218
|
+ LOG_WRITE(ti);
|
|
219
|
+ LOG_WRITE(" is acceptable: ");
|
|
220
|
+ LOG_WRITE((int)thermostats[ti].currentTemp);
|
|
221
|
+ LOG_WRITE(" >= ");
|
|
222
|
+ LOG_WRITELN((int)thermostats[ti].requestedTemp);
|
|
223
|
+ thermostats[ti].requestHeat = false;
|
|
224
|
+ }
|
|
225
|
+ }
|
|
226
|
+ else {
|
|
227
|
+ if (thermostats[ti].requestHeat) {
|
|
228
|
+ LOG_WRITE("Thermostat ");
|
|
229
|
+ LOG_WRITE(ti);
|
|
230
|
+ LOG_WRITELN(" has been turned OFF");
|
|
231
|
+ thermostats[ti].requestHeat = false;
|
|
232
|
+ setRelayManual(OUTPUT_BURNER_IDX, 0);
|
|
233
|
+ setRelayManual(OUTPUT_WATER_LOAD_IDX, 0);
|
|
234
|
+ }
|
|
235
|
+ }
|
|
236
|
+ }
|
|
237
|
+}
|
|
238
|
+
|
|
239
|
+void updateZwave() {
|
|
240
|
+ for (int ti = 0; ti < THERMOSTATS_COUNT; ++ti) {
|
|
241
|
+ const word oldValue = thermostats[ti].lastZwaveReadTemp;
|
|
242
|
+ const word newValue = thermostats[ti].currentTemp;
|
|
243
|
+ if (abs_diff(newValue, oldValue) > thermostats[ti].updateThresholdTemp) {
|
|
244
|
+ LOG_WRITE("Sensor ");
|
|
245
|
+ LOG_WRITE(ti);
|
|
246
|
+ LOG_WRITE(" value changed from ");
|
|
247
|
+ LOG_WRITE((int)oldValue);
|
|
248
|
+ LOG_WRITE(" to ");
|
|
249
|
+ LOG_WRITELN((int)newValue);
|
|
250
|
+ zunoSendReport(2 + (ti * 2)); // 2 or 4
|
|
251
|
+ }
|
|
252
|
+ else if (millis() - thermostats[ti].lastZwaveReadTime > (unsigned long)thermostats[ti].updateUnsolicitedTime * 1000) {
|
|
253
|
+ LOG_WRITE("Sensor ");
|
|
254
|
+ LOG_WRITE(ti);
|
|
255
|
+ LOG_WRITE(" unsolicited update to ");
|
|
256
|
+ LOG_WRITELN((int)newValue);
|
|
257
|
+ zunoSendReport(2 + (ti * 2)); // 2 or 4
|
|
258
|
+ }
|
|
259
|
+ }
|
|
260
|
+}
|
|
261
|
+
|
|
262
|
+void updateOutputs() {
|
|
263
|
+
|
|
264
|
+ // TODO Handle min cycle
|
|
265
|
+ bool burnerRequested = thermostats[THERMOSTAT_HEAT_IDX].requestHeat || (thermostats[THERMOSTAT_WATER_IDX].requestHeat && thermostats[THERMOSTAT_HEAT_IDX].currentTemp < thermostats[THERMOSTAT_WATER_IDX].requestedTemp);
|
|
266
|
+ bool waterLoadRequested = thermostats[THERMOSTAT_WATER_IDX].requestHeat && thermostats[THERMOSTAT_HEAT_IDX].currentTemp > thermostats[THERMOSTAT_WATER_IDX].currentTemp;
|
|
267
|
+
|
|
268
|
+ if (thermostats[THERMOSTAT_HEAT_IDX].requestedMode == THERMOSTAT_MODE_HEAT || thermostats[THERMOSTAT_WATER_IDX].requestedMode == THERMOSTAT_MODE_HEAT) {
|
|
269
|
+ setRelay(OUTPUT_BURNER_IDX, burnerRequested);
|
|
270
|
+ }
|
|
271
|
+ if (thermostats[THERMOSTAT_WATER_IDX].requestedMode == THERMOSTAT_MODE_HEAT) {
|
|
272
|
+ setRelay(OUTPUT_WATER_LOAD_IDX, waterLoadRequested);
|
|
273
|
+ }
|
|
274
|
+}
|
|
275
|
+
|
|
276
|
+void loop() {
|
|
277
|
+ updateValues();
|
|
278
|
+ updateZwave();
|
|
279
|
+ updateOutputs();
|
|
280
|
+ delay(100);
|
|
281
|
+}
|
|
282
|
+
|
|
283
|
+// ZWave callbacks
|
|
284
|
+void config_parameter_changed(byte param, word value) {
|
|
285
|
+ LOG_WRITE("Zwave param ");
|
|
286
|
+ LOG_WRITE((int)param);
|
|
287
|
+ LOG_WRITE(": ");
|
|
288
|
+ LOG_WRITELN((int)value);
|
|
289
|
+
|
|
290
|
+ if (param >= ZW_PARAM_UPDATE_UNSOLICITED_TIME_BASE && param < ZW_PARAM_UPDATE_UNSOLICITED_TIME_BASE + THERMOSTATS_COUNT) {
|
|
291
|
+ thermostats[param - ZW_PARAM_UPDATE_UNSOLICITED_TIME_BASE].updateUnsolicitedTime = value;
|
|
292
|
+ }
|
|
293
|
+ else if (param >= ZW_PARAM_UPDATE_THRESHOLD_TEMP_BASE && param < ZW_PARAM_UPDATE_THRESHOLD_TEMP_BASE + THERMOSTATS_COUNT) {
|
|
294
|
+ thermostats[param - ZW_PARAM_UPDATE_THRESHOLD_TEMP_BASE].updateThresholdTemp = value;
|
|
295
|
+ }
|
|
296
|
+ else if (param >= ZW_PARAM_MIN_CYCLE_DURATION_BASE && param < ZW_PARAM_MIN_CYCLE_DURATION_BASE + THERMOSTATS_COUNT) {
|
|
297
|
+ thermostats[param - ZW_PARAM_MIN_CYCLE_DURATION_BASE].minCycleDuration = value;
|
|
298
|
+ }
|
|
299
|
+ else if (param >= ZW_PARAM_TOLERANCE_TEMP_BASE && param < ZW_PARAM_TOLERANCE_TEMP_BASE + THERMOSTATS_COUNT) {
|
|
300
|
+ thermostats[param - ZW_PARAM_TOLERANCE_TEMP_BASE].toleranceTemp = value;
|
|
301
|
+ }
|
|
302
|
+}
|
|
303
|
+
|
|
304
|
+// Thermostats
|
|
305
|
+void setMode(int ti, byte mode) {
|
|
306
|
+ LOG_WRITE("Thermostat ");
|
|
307
|
+ LOG_WRITE(ti);
|
|
308
|
+ LOG_WRITE(" update: mode: ");
|
|
309
|
+ LOG_WRITELN((int)mode);
|
|
310
|
+ thermostats[ti].requestedMode = mode;
|
|
311
|
+ EEPROM_put(EEPROM_THERMOSTAT_MODE_BASE + (sizeof(thermostats[ti].requestedMode) * ti), &thermostats[ti].requestedMode, sizeof(thermostats[ti].requestedMode));
|
|
312
|
+}
|
|
313
|
+byte getMode(int ti) {
|
|
314
|
+ return thermostats[ti].requestedMode;
|
|
315
|
+}
|
|
316
|
+void setTemp(int ti, byte mode, word temp) {
|
|
317
|
+ LOG_WRITE("Thermostat ");
|
|
318
|
+ LOG_WRITE(ti);
|
|
319
|
+ LOG_WRITE(" update: mode: ");
|
|
320
|
+ LOG_WRITE((int)mode);
|
|
321
|
+ LOG_WRITE(" temp: ");
|
|
322
|
+ LOG_WRITELN((int)temp);
|
|
323
|
+ thermostats[ti].requestedMode = mode;
|
|
324
|
+ EEPROM_put(EEPROM_THERMOSTAT_MODE_BASE + (sizeof(thermostats[ti].requestedMode) * ti), &thermostats[ti].requestedMode, sizeof(thermostats[ti].requestedMode));
|
|
325
|
+ if (mode == THERMOSTAT_MODE_HEAT) {
|
|
326
|
+ thermostats[ti].requestedTemp = temp * 10;// Z-Wave thermostat precision is 0.1
|
|
327
|
+ EEPROM_put(EEPROM_REQUESTED_TEMP_ADDR_BASE + (sizeof(thermostats[ti].requestedTemp) * ti), &thermostats[ti].requestedTemp, sizeof(thermostats[ti].requestedTemp));
|
|
328
|
+ }
|
|
329
|
+}
|
|
330
|
+word getTemp(int ti, byte mode) {
|
|
331
|
+ if (mode == THERMOSTAT_MODE_HEAT) {
|
|
332
|
+ return thermostats[ti].requestedTemp / 10;// Z-Wave thermostat precision is 0.1
|
|
333
|
+ }
|
|
334
|
+ return 0;
|
|
335
|
+}
|
|
336
|
+word getCurrentTemp(int ti) {
|
|
337
|
+ LOG_WRITE("Sensor ");
|
|
338
|
+ LOG_WRITE(ti);
|
|
339
|
+ LOG_WRITELN(" Zwave update");
|
|
340
|
+ thermostats[ti].lastZwaveReadTime = millis();
|
|
341
|
+ thermostats[ti].lastZwaveReadTemp = thermostats[ti].currentTemp;
|
|
342
|
+ return thermostats[ti].lastZwaveReadTemp;
|
|
343
|
+}
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+// Heater
|
|
348
|
+void setHeaterMode(byte mode) {
|
|
349
|
+ setMode(THERMOSTAT_HEAT_IDX, mode);
|
|
350
|
+}
|
|
351
|
+byte getHeaterMode(){
|
|
352
|
+ return getMode(THERMOSTAT_HEAT_IDX);
|
|
353
|
+}
|
|
354
|
+void setHeaterTemp(byte mode, word temp) {
|
|
355
|
+ setTemp(THERMOSTAT_HEAT_IDX, mode, temp);
|
|
356
|
+}
|
|
357
|
+word getHeaterTemp(byte mode) {
|
|
358
|
+ return getTemp(THERMOSTAT_HEAT_IDX, mode);
|
|
359
|
+}
|
|
360
|
+word getHeaterCurrentTemp() {
|
|
361
|
+ return getCurrentTemp(THERMOSTAT_HEAT_IDX);
|
|
362
|
+}
|
|
363
|
+
|
|
364
|
+// Water
|
|
365
|
+void setWaterMode(byte mode) {
|
|
366
|
+ setMode(THERMOSTAT_WATER_IDX, mode);
|
|
367
|
+}
|
|
368
|
+byte getWaterMode(){
|
|
369
|
+ return getMode(THERMOSTAT_WATER_IDX);
|
|
370
|
+}
|
|
371
|
+void setWaterTemp(byte mode, word temp) {
|
|
372
|
+ setTemp(THERMOSTAT_WATER_IDX, mode, temp);
|
|
373
|
+}
|
|
374
|
+word getWaterTemp(byte mode) {
|
|
375
|
+ return getTemp(THERMOSTAT_WATER_IDX, mode);
|
|
376
|
+}
|
|
377
|
+word getWaterCurrentTemp() {
|
|
378
|
+ return getCurrentTemp(THERMOSTAT_WATER_IDX);
|
|
379
|
+}
|
|
380
|
+
|
|
381
|
+// Raw outputs
|
|
382
|
+
|
|
383
|
+void setRelay(int oi, bool value) {
|
|
384
|
+ if (value != outputs[oi].currentValue) {
|
|
385
|
+ LOG_WRITE("Output ");
|
|
386
|
+ LOG_WRITE(oi);
|
|
387
|
+ LOG_WRITE(" update: value: ");
|
|
388
|
+ LOG_WRITELN((int)value);
|
|
389
|
+ outputs[oi].currentValue = value;
|
|
390
|
+ outputs[oi].lastChangedTime = millis();
|
|
391
|
+ digitalWrite(outputs[oi].pin, value);
|
|
392
|
+ zunoSendReport(5 + oi); // 5 to 8
|
|
393
|
+ }
|
|
394
|
+}
|
|
395
|
+byte getRelay(int oi) {
|
|
396
|
+ return outputs[oi].currentValue;
|
|
397
|
+}
|
|
398
|
+
|
|
399
|
+void setRelayManual(int oi, byte value) {
|
|
400
|
+ if (oi == OUTPUT_BURNER_IDX && (thermostats[THERMOSTAT_HEAT_IDX].requestedMode == THERMOSTAT_MODE_HEAT || thermostats[THERMOSTAT_WATER_IDX].requestedMode == THERMOSTAT_MODE_HEAT)) {
|
|
401
|
+ return;
|
|
402
|
+ }
|
|
403
|
+ if (oi == OUTPUT_WATER_LOAD_IDX && thermostats[THERMOSTAT_WATER_IDX].requestedMode == THERMOSTAT_MODE_HEAT) {
|
|
404
|
+ return;
|
|
405
|
+ }
|
|
406
|
+
|
|
407
|
+ setRelay(oi, value ? 1 : 0);
|
|
408
|
+}
|
|
409
|
+byte getRelayZwave(int oi) {
|
|
410
|
+ return getRelay(oi) ? 255 : 0;
|
|
411
|
+}
|
|
412
|
+
|
|
413
|
+void setRelayBurner(byte value) {
|
|
414
|
+ setRelayManual(OUTPUT_BURNER_IDX, value);
|
|
415
|
+}
|
|
416
|
+byte getRelayBurner() {
|
|
417
|
+ return getRelayZwave(OUTPUT_BURNER_IDX);
|
|
418
|
+}
|
|
419
|
+
|
|
420
|
+void setRelayWaterLoad(byte value) {
|
|
421
|
+ setRelayManual(OUTPUT_WATER_LOAD_IDX, value);
|
|
422
|
+}
|
|
423
|
+byte getRelayWaterLoad() {
|
|
424
|
+ return getRelayZwave(OUTPUT_WATER_LOAD_IDX);
|
|
425
|
+}
|
|
426
|
+
|
|
427
|
+void setRelayWaterRecycling(byte value) {
|
|
428
|
+ setRelayManual(OUTPUT_WATER_RECYCLING_IDX, value);
|
|
429
|
+}
|
|
430
|
+byte getRelayWaterRecycling() {
|
|
431
|
+ return getRelayZwave(OUTPUT_WATER_RECYCLING_IDX);
|
|
432
|
+}
|
|
433
|
+
|
|
434
|
+void setRelayHeatPump1(byte value) {
|
|
435
|
+ setRelayManual(OUTPUT_HEAT_PUMP_1_IDX, value);
|
|
436
|
+}
|
|
437
|
+byte getRelayHeatPump1() {
|
|
438
|
+ return getRelayZwave(OUTPUT_HEAT_PUMP_1_IDX);
|
|
439
|
+}
|
|
440
|
+
|
|
441
|
+// Raw inputs
|
|
442
|
+
|
|
443
|
+byte getInputBurnerRunning() {
|
|
444
|
+ return !digitalRead(PIN_INPUT_BURNER_RUNNING);
|
|
445
|
+}
|
|
446
|
+
|
|
447
|
+byte getInputBurnerAlarm() {
|
|
448
|
+ return !digitalRead(PIN_INPUT_BURNER_ALARM);
|
|
449
|
+}
|
|
450
|
+
|
|
451
|
+byte getInputBoilerAlarm() {
|
|
452
|
+ return !digitalRead(PIN_INPUT_BOILER_ALARM);
|
|
453
|
+}
|