The USB core will currently fail to detect disconnections if a new
device has attached by the time the port is examined in
usb_hotplug().
Fix by recording the fact that a disconnection has taken place
whenever the "connection status changed" (CSC) bit is observed to be
set. (Whether the change represents a disconnection or a
reconnection, it indicates that the port has experienced some time of
being disconnected.)
Note that the time at which a disconnection can be detected varies by
hub type. In particular: root hubs can observe the CSC bit when
polling, and so will record the disconnection before calling
usb_port_changed(), but USB hubs read the port status (and hence the
CSC bit) only during the call to hub_speed(), long after the call to
usb_port_changed().
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[pci] Provide PCI_CLASS() to calculate a scalar PCI class value
Rename PCI_CLASS() (which constructs a struct pci_class_id) to
PCI_CLASS_ID(), and provide PCI_CLASS() as a macro which constructs
the 24-bit scalar value of a PCI class code.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[usb] Include setup packet within I/O buffer for message transfers
The USB API currently assumes that host controllers will have
immediate data buffer space available in which to store the setup
packet. This is true for xHCI, partially true for EHCI (which happens
to have 12 bytes of padding in each transfer descriptor due to
alignment requirements), and not true at all for UHCI.
Include the setup packet within the I/O buffer passed to the host
controller's message() method, thereby eliminating the requirement for
host controllers to provide immediate data buffers.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[xhci] Support USB1 devices attached via transaction translators
xHCI provides a somewhat convoluted mechanism for specifying details
of a transaction translator. Hubs must be marked as such in the
device slot context. The only opportunity to do so is as part of a
Configure Endpoint command, which can be executed only when opening
the hub's interrupt endpoint.
We add a mechanism for host controllers to intercept the opening of
hub devices, providing xHCI with an opportunity to update the internal
device slot structure for the corresponding USB device to indicate
that the device is a hub. We then include the hub-specific details in
the input context whenever any Configure Endpoint command is issued.
When a device is opened, we record the device slot and port for its
transaction translator (if any), and supply these as part of the
Address Device command.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[ehci] Support USB1 devices attached via transaction translators
Support low-speed and full-speed devices attached to a USB2 hub. Such
devices use a transaction translator (TT) within the USB2 hub, which
asynchronously initiates transactions on the lower-speed bus and
returns the result via a split completion on the high-speed bus.
We make the simplifying assumption that there will never be more than
sixteen active interrupt endpoints behind a single transaction
translator; this assumption allows us to schedule all periodic start
splits in microframe 0 and all periodic split completions in
microframes 2 and 3. (We do not handle isochronous endpoints.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>