[dhcp] Add preliminary support for PXE Boot Servers
Some PXE configurations require us to perform a third DHCP transaction
(in addition to the real DHCP transaction and the ProxyDHCP
transaction) in order to retrieve information from a "Boot Server".
This is an experimental implementation, since the actual behaviour is
not well specified in the PXE spec.
[tcpip] Allow for transmission to multicast IPv4 addresses
When sending to a multicast address, it may be necessary to specify
the source address explicitly, since the multicast destination address
does not provide enough information to deduce the source address via
the miniroute table.
Allow the source address specified via the data-xfer metadata to be
passed down through the TCP/IP stack to the IPv4 layer, which can use
it as a default source address.
[dhcp] Centralise DHCP successful state transitions
Move all the DHCP state transition logic into a single function
dhcp_next_state(). This will make it easier to add support for PXE
Boot Servers, since it abstracts away the difference between "mark
DHCP as complete" and "transition to boot server discovery".
[dhcp] Allow for missing server ID in ProxyDHCPACK
The Linux PXE server (http://www.kano.org.uk/projects/pxe) does not
set the server identifier in its ProxyDHCP responses. If the server
ID is missing, do not treat this as an error.
This resolves the "vague and unsettling memory" mentioned in commit
fdb8481d ("[dhcp] Verify server identifier on ProxyDHCPACKs").
Note that we already accept ProxyDHCPOFFERs without a server
identifier; they get treated as potential BOOTP packets.
[efi] Expose both GUIDs for the EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL
At some point, it seems that someone decided to change the GUID for
the EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL. Current EFI builds
ignore the older GUID, older EFI builds ignore the newer GUID, so we
have to expose both.
[efi] Provide component name protocol and device path protocol interfaces
Include a minimal component name protocol so that the driver name
shows up as something other than "<UNKNOWN>" in the driver list, and a
device path protocol so that the network interface shows up as a
separate device in the device list, rather than being attached
directly to the PCI device.
Incidentally, the EFI component name protocol reaches new depths for
signal-to-noise ratio in program code. A typical instance within the
EFI development kit will use an additional 300 lines of code to
provide slightly less functionality than GNU gettext achieves with
three additional characters.
The UEFI specification does not mention ROM checksums, and reassigns
the field typically used as a checksum byte. The UEFI shell
"loadpcirom" utility does not verify ROM checksums, but it seems that
some UEFI BIOSes do.
Some devices take a very long time to initialise. This can make it
difficult to visually distinguish between the error cases of failing
to start executing C code and failing to initialise a device.
Add a "gPXE initialising devices..." message. The trailing ellipsis
indicates to the user that this may take some time, and the presence
of the message indicates to the developer that relocation etc. all
succeeded.
elf2efi converts a suitable ELF executable (containing relocation
information, and with appropriate virtual addresses) into an EFI
executable. It is less tightly coupled with the gPXE build process
and, in particular, does not require the use of a hand-crafted PE
image header in efiprefix.S.
elf2efi correctly handles .bss sections, which significantly reduces
the size of the gPXE EFI executable.
[build] Avoid strict-aliasing warnings when building with gcc 4.4
Conventional usage of the various struct sockaddr_xxx types involves
liberal use of casting, which tends to trigger strict-aliasing
warnings from gcc. Avoid these now and in future by marking all the
relevant types with __attribute__((may_alias)).
[efi] Inhibit harmless ld warning on unresolved symbol check
The check for unresolved symbols does not explicitly specify an output
architecture format, and so causes a warning when building an i386 EFI
binary on an x86_64 platform. This warning is harmless, and
specifying the output architecture in multiple places is cumbersome,
so just inhibit the warning.
[pcbios] Add additional sanity check for bogus e820 map
At POST time some BIOSes return invalid e820 maps even though
they indicate that the data is valid. We add a check that the first
region returned by e820 is RAM type and declare the map to be invalid
if it is not.
This extends the sanity checks from 8b20e5d ("[pcbios] Sanity-check
the INT15,e820 and INT15,e801 memory maps").
[etherfabric] Make use of pci_bar_start() 64-bit clean
Driver was storing the result of pci_bar_start() and pci_bar_size() in
an int, rather than an unsigned long.
(Bug was introduced in the vendor's tree in commit eac85cd "Port
etherfabric driver to net_device api".)
adjust_pci_device() has historically enabled bus-mastering and I/O
cycles, but has never previously needed to enable memory cycles. Some
EFI systems seem not to enable memory cycles by default, so add that
to the list of PCI command register bits that we force on.
[e1000] Use PCI_BASE_ADDRESS_* symbols instead of integers
When compiling for the Linux kernel, PCI_BASE_ADDRESS_0 == 0, and
PCI_BASE_ADDRESS_1 == 1. This is not so when compiling for gPXE. We
must use the symbolic names rather than integers to get the correct
values.
Bug identified and patch supplied by:
George Chou <george.chou@advantech.com>
[x86_64] Add support for compilation as an x86_64 binary
Currently the only supported platform for x86_64 is EFI.
Building an EFI64 gPXE requires a version of gcc that supports
__attribute__((ms_abi)). This currently means a development build of
gcc; the feature should be present when gcc 4.4 is released.
In the meantime; you can grab a suitable gcc tree from
git://git.etherboot.org/scm/people/mcb30/gcc/.git
[hermon] Fix permissions broken in 3a799e9 ("Add PCI ID for ConnectX QDR card")
The patch file supplied for commit 3a799e9 ("[hermon] Add PCI ID for
ConnectX QDR card") accidentally marked drivers/infiniband/hermon.c as
being executable.
[efi] Use EFI-native mechanism for accessing SMBIOS table
EFI provides a copy of the SMBIOS table accessible via the EFI system
table, which we should use instead of manually scanning through the
F000:0000 segment.
EFI passes in copies of SMBIOS and other system configuration tables
via the EFI system table. Allow configuration tables to be requested
using a mechanism similar to the current method for requesting EFI
protocols.
[romprefix] Change from opt-in to opt-out when booting via INT19
On non-BBS systems, we have to hook INT 19 in order to be able to boot
from the gPXE ROM at all. However, doing this unconditionally will
prevent the user from booting via any other devices.
Previously, the INT 19 entry point would prompt the user to press B in
order to boot from gPXE, which makes it impossible to perform an
unattended network boot. We now prompt the user to press N to skip
booting from gPXE, which allows for unattended operation.
This should be a better match for most real-world scenarios. Most
modern systems support BBS and so are unaffected by this change. Very
old (non-BBS) systems tend not to have PXE ROMs by default anyway; if
the user has added a gPXE ROM then they probably do want to boot from
the network. Newer non-BBS systems are essentially limited to IBM
servers, which will recapture the INT 19 vector anyway and implement
their own boot-ordering selection mechanism.
This driver is based on Stefan Hajnoczi's summer work, which
is in turn based on version 1.01 of the linux b44 driver.
I just assembled the pieces and fixed/added a few pieces
here and there to make it work for my hardware.
The most major limitation is that this driver won't work
on systems with >1GB RAM due to the card not having enough
address bits for that and gPXE not working around this
limitation.
Still, other than that the driver works well enough for
at least 2 users :) and the above limitation can always
be fixed when somebody wants it bad enough :)
Signed-off-by: Pantelis Koukousoulas <pktoss@gmail.com>
[netdevice] Kill off the various guess_boot_netdev() functions
Remove the assortment of miscellaneous hacks to guess the "network
boot device", and replace them each with a call to last_opened_netdev().
It still isn't guaranteed correct, but it won't be any worse than
before, and it will at least be consistent.
[netdevice] Provide function to retrieve the most recently opened net device
There are currently four places within the codebase that use a
heuristic to guess the "boot network device", with varying degrees of
success. Add a feature to the net device core to maintain a list of
open network devices, in order of opening, and provide a function
last_opened_netdev() to retrieve the most recently opened net device.
This should do a better job than the current assortment of
guess_boot_netdev() functions.
[aoe] Use an AoE config query to identify the target MAC address
The AoE spec does not specify that the source MAC address of a
received packet actually matches the MAC address of the AoE target.
In principle an AoE server can respond to an AoE request on any
interface available to it, which may not be an address configured to
accept AoE requests.
This issue is resolved by implementing AoE device discovery. The
purpose of AoE discovery is to find out which addresses an AoE target
can use for requests. An AoE configuration command is sent when the
AoE attach is attempted. The AoE target must respond to that
configuration query from an interface that can accept requests.
Based on a patch from Ryan Thomas <ryan@coraid.com>
EFI_STATUS is defined as an INTN, which maps to UINT32 (i.e. unsigned
int) on i386 and UINT64 (i.e. unsigned long) on x86_64. This would
require a cast each time the error status is printed.
Add efi_strerror() to avoid this ickiness and simultaneously enable
prettier reporting of EFI status codes.
[i386] Change [u]int32_t to [unsigned] int, rather than [unsigned] long
This brings us in to line with Linux definitions, and also simplifies
adding x86_64 support since both platforms have 2-byte shorts, 4-byte
ints and 8-byte long longs.