Strip down i386 PCI configuration space I/O to the bare minimum. A
typical build will now include 880 bytes of PCI support code, compared to
2327 bytes in Etherboot 5.4.
(There is a slight cost of around 5 extra bytes per access to a
non-constant config space address; this should be an overall win.
Driver-specific accesses will usually be to constant addresses, for
which there is no additional cost.)
Restructured PCI subsystem to fit the new device model.
Generic PCI code now handles 64-bit BARs correctly when setting
"membase"; drivers should need to call pci_bar_start() only if they want
to use BARs other than the first memory or I/O BAR.
Split rarely-used PCI functions out into pciextra.c.
Core PCI code is now 662 bytes (down from 1308 bytes in Etherboot 5.4).
284 bytes of this saving comes from the pci/pciextra split.
Cosmetic changes to lots of drivers (e.g. vendor_id->vendor in order to
match the names used in Linux).
Tear out old heap code, replace with code that simply allocates memory
for use by malloc().
This breaks the image-loading code (which previously used the heap to
allocate the buffer for downloading the image), but that's not a major
concern since I'm going to tear out all the image formats within the next
couple of days anyway. Byebye, NBI! :)
Shaved around 100 bytes off vsprintf.o. It's now 50 bytes smaller than
the old implementation and provides much more conformant semantics,
including the ability to return the number of characters that would have
been printed to the string had the buffer been big enough. (iSCSI needs
this functionality).
Change semantics of network API so that packet-absorbing calls *always*
take ownership of the packet, rather than doing so only if they return
success. This breaks semantic compatibility with Linux's
hard_start_xmit() method, but means that we don't have to worry so much
about error cases.
Split mechanism of processing received packets (net_rx_process()) out
from policy (net_step()), preparatory to putting net_step() in a separate
object.
I want to get to the point where any header in include/ reflects a
standard user-level header (e.g. a POSIX header), while everything that's
specific to gPXE lives in include/gpxe/. Headers that reflect a Linux
header (e.g. if_ether.h) should also be in include/gpxe/, with the same
name as the Linux header and, preferably, the same names used for the
definitions.
Network API now allows for multiple network devices (although the
implementation allows for only one, and does so without compromising on
the efficiency of static allocation).
Link-layer protocols are cleanly separated from the device drivers.
Network-layer protocols are cleanly separated from individual network
devices.
Link-layer and network-layer protocols are cleanly separated from each
other.
Network API now allows for multiple network devices (although the
implementation allows for only one, and does so without compromising on
the efficiency of static allocation).
Link-layer protocols are cleanly separated from the device drivers.
Network-layer protocols are cleanly separated from individual network
devices.
Link-layer and network-layer protocols are cleanly separated from each
other.