[comboot] Allow for tail recursion of COMBOOT images
Multi-level menus via COMBOOT rely on the COMBOOT program being able
to exit and invoke a new COMBOOT program (the next menu). This works,
but rapidly (within about five iterations) runs out of space in gPXE's
internal stack, since each new image is executed in a new function
context.
Fix by allowing tail recursion between images; an image can now
specify a replacement image for itself, and image_exec() will perform
the necessary tail recursion.
This patch extends the embedded image feature to allow multiple
embedded images instead of just one.
gPXE now always boots the first embedded image on startup instead of
doing the hardcoded DHCP boot (aka autoboot).
Based heavily upon a patch by Stefan Hajnoczi <stefanha@gmail.com>.
[pxe] Obey lists of PXE Boot Servers and associated Discovery Control bits
Various combinations of options 43.6, 43.7 and 43.8 dictate which
servers we send Boot Server Discovery requests to, and which servers
we should accept responses from. Obey these options, and remove the
explicit specification of a single Boot Server from start_pxebs() and
dependent functions.
[iobuf] Add iob_disown() and use it where it simplifies code
There are many functions that take ownership of the I/O buffer they
are passed as a parameter. The caller should not retain a pointer to
the I/O buffer. Use iob_disown() to automatically nullify the
caller's pointer, e.g.:
xfer_deliver_iob ( xfer, iob_disown ( iobuf ) );
This will ensure that iobuf is set to NULL for any code after the call
to xfer_deliver_iob().
iob_disown() is currently used only in places where it simplifies the
code, by avoiding an extra line explicitly setting the I/O buffer
pointer to NULL. It should ideally be used with each call to any
function that takes ownership of an I/O buffer. (The SSA
optimisations will ensure that use of iob_disown() gets optimised away
in cases where the caller makes no further use of the I/O buffer
pointer anyway.)
If gcc ever introduces an __attribute__((free)), indicating that use
of a function argument after a function call should generate a
warning, then we should use this to identify all applicable function
call sites, and add iob_disown() as necessary.
The DHCP client code now implements only the mechanism of the DHCP and
PXE Boot Server protocols. Boot Server Discovery can be initiated
manually using the "pxebs" command. The menuing code is separated out
into a user-level function on a par with boot_root_path(), and is
entered in preference to a normal filename boot if the DHCP vendor
class is "PXEClient" and the PXE boot menu option exists.
Try to qualify relative names in the DNS resolver using the DHCP Domain
Name. For example:
DHCP Domain Name: etherboot.org
(Relative) Name: www
yields:
www.etherboot.org
Only names with no dots ('.') will be modified. A name with one or more
dots is unchanged.
PXE dictates a mechanism for boot menuing, involving prompting the
user with a variable message, waiting for a predefined keypress,
displaying a boot menu, and waiting for a selection.
This breaks the currently desirable abstraction that DHCP is a process
that can happen in the background without any user interaction.
[console] Allow KEY_xxx constants to cover F8 function key
F8 is represented by the ANSI escape sequence "^[[19~", which is not
representable as a KEY_xxx constant using the current encoding scheme.
Adapt the encoding scheme to allow F8 to be represented, since PXE
requires that we may need to prompt the user to press F8.
Remove the lazy assumption that ProxyDHCP == "DHCP with option 60 set
to PXEClient", and explicitly separate the notion of ProxyDHCP from
the notion of packets containing PXE options.
Pick out the first boot menu item from the boot menu (option 43.9) and
pass it to the boot server as the boot menu item (option 43.71).
Also improve DHCP debug messages to include more details of the
packets being transmitted.
[dhcp] Add preliminary support for PXE Boot Servers
Some PXE configurations require us to perform a third DHCP transaction
(in addition to the real DHCP transaction and the ProxyDHCP
transaction) in order to retrieve information from a "Boot Server".
This is an experimental implementation, since the actual behaviour is
not well specified in the PXE spec.
[tcpip] Allow for transmission to multicast IPv4 addresses
When sending to a multicast address, it may be necessary to specify
the source address explicitly, since the multicast destination address
does not provide enough information to deduce the source address via
the miniroute table.
Allow the source address specified via the data-xfer metadata to be
passed down through the TCP/IP stack to the IPv4 layer, which can use
it as a default source address.
[efi] Provide component name protocol and device path protocol interfaces
Include a minimal component name protocol so that the driver name
shows up as something other than "<UNKNOWN>" in the driver list, and a
device path protocol so that the network interface shows up as a
separate device in the device list, rather than being attached
directly to the PCI device.
Incidentally, the EFI component name protocol reaches new depths for
signal-to-noise ratio in program code. A typical instance within the
EFI development kit will use an additional 300 lines of code to
provide slightly less functionality than GNU gettext achieves with
three additional characters.
elf2efi converts a suitable ELF executable (containing relocation
information, and with appropriate virtual addresses) into an EFI
executable. It is less tightly coupled with the gPXE build process
and, in particular, does not require the use of a hand-crafted PE
image header in efiprefix.S.
elf2efi correctly handles .bss sections, which significantly reduces
the size of the gPXE EFI executable.
[build] Avoid strict-aliasing warnings when building with gcc 4.4
Conventional usage of the various struct sockaddr_xxx types involves
liberal use of casting, which tends to trigger strict-aliasing
warnings from gcc. Avoid these now and in future by marking all the
relevant types with __attribute__((may_alias)).
[x86_64] Add support for compilation as an x86_64 binary
Currently the only supported platform for x86_64 is EFI.
Building an EFI64 gPXE requires a version of gcc that supports
__attribute__((ms_abi)). This currently means a development build of
gcc; the feature should be present when gcc 4.4 is released.
In the meantime; you can grab a suitable gcc tree from
git://git.etherboot.org/scm/people/mcb30/gcc/.git
[efi] Use EFI-native mechanism for accessing SMBIOS table
EFI provides a copy of the SMBIOS table accessible via the EFI system
table, which we should use instead of manually scanning through the
F000:0000 segment.
EFI passes in copies of SMBIOS and other system configuration tables
via the EFI system table. Allow configuration tables to be requested
using a mechanism similar to the current method for requesting EFI
protocols.
This driver is based on Stefan Hajnoczi's summer work, which
is in turn based on version 1.01 of the linux b44 driver.
I just assembled the pieces and fixed/added a few pieces
here and there to make it work for my hardware.
The most major limitation is that this driver won't work
on systems with >1GB RAM due to the card not having enough
address bits for that and gPXE not working around this
limitation.
Still, other than that the driver works well enough for
at least 2 users :) and the above limitation can always
be fixed when somebody wants it bad enough :)
Signed-off-by: Pantelis Koukousoulas <pktoss@gmail.com>
[netdevice] Provide function to retrieve the most recently opened net device
There are currently four places within the codebase that use a
heuristic to guess the "boot network device", with varying degrees of
success. Add a feature to the net device core to maintain a list of
open network devices, in order of opening, and provide a function
last_opened_netdev() to retrieve the most recently opened net device.
This should do a better job than the current assortment of
guess_boot_netdev() functions.
[aoe] Use an AoE config query to identify the target MAC address
The AoE spec does not specify that the source MAC address of a
received packet actually matches the MAC address of the AoE target.
In principle an AoE server can respond to an AoE request on any
interface available to it, which may not be an address configured to
accept AoE requests.
This issue is resolved by implementing AoE device discovery. The
purpose of AoE discovery is to find out which addresses an AoE target
can use for requests. An AoE configuration command is sent when the
AoE attach is attempted. The AoE target must respond to that
configuration query from an interface that can accept requests.
Based on a patch from Ryan Thomas <ryan@coraid.com>
EFI_STATUS is defined as an INTN, which maps to UINT32 (i.e. unsigned
int) on i386 and UINT64 (i.e. unsigned long) on x86_64. This would
require a cast each time the error status is printed.
Add efi_strerror() to avoid this ickiness and simultaneously enable
prettier reporting of EFI status codes.
[infiniband] Respect hop pointer when building directed route SMP return path
The return path in directed route SMPs lists the egress ports in order
from SM to node, rather than from node to SM.
To write to the correct offset within the return path, we need to
parse the hop pointer. This is held within the class-specific data
portion of the MAD header, which was previously unused by us and
defined to be a uint16_t. Define this field to be a union type; this
requires some rearrangement of ib_mad.h and corresponding changes to
ipoib.c.
[linda] Add support for QLogic 7220-based Infiniband HCAs
These cards very nearly support our current IB Verbs model. There is
one minor difference: multicast packets will always be delivered by
the hardware to QP0, so the driver has to redirect them to the
appropriate QP. This means that QP owners may see receive completions
for buffers that they never posted. Nothing in our current codebase
will break because of this.
[infiniband] Add raw packet parser and constructor
This can be used with cards that require the driver to construct and
parse packet headers manually. Headers are optionally handled
out-of-line from the packet payload, since some such cards will split
received headers into a separate ring buffer.