[802.11] Enhance support for driver PHY differences
The prior net80211 model of physical-layer behavior for drivers was
overly simplistic and limited the drivers that could be written. To
be more flexible, split the driver-provided list of supported rates by
band, and add a means for specifying a list of supported channels.
Allow drivers to specify a hardware channel value that will be tied to
uses of the channel.
Expose net80211_duration() to drivers, and make the rate it uses in
its computations configurable, so that it can be used in calculating
durations that must be set in hardware for ACK and CTS packets. Add
net80211_cts_duration() for the common case of calculating the
duration for a CTS packet.
Signed-off-by: Michael Brown <mcb30@etherboot.org>
[infiniband] Change IB_{QPN,QKEY,QPT} names from {SMA,GMA} to {SMI,GSI}
The IBA specification refers to management "interfaces" and "agents".
The interface is the component that connects to the queue pair and
sends and receives MADs; the agent is the component that constructs
the reply to the MAD.
Rename the IB_{QPN,QKEY,QPT} constants as a first step towards making
this separation in gPXE.
[hermon] Allow software GMA to receive packets destined for QP1
The Linux IB Communication Manager will always send MADs to QP1,
rather than back to the originating QP. On Hermon, QP1 is by default
handled by the embedded firmware. We can change this, but the cost is
that we have to handle both QP0 and QP1 (i.e. we have to provide SMA
as well as GMA service in software), and we have to use MLX queues
rather than standard UD queues (i.e. we have to construct the UD
datagrams by hand).
There doesn't seem to be any viable way around this situation, ugly
though it is.
[infiniband] Add infrastructure for RC queue pairs
Queue pairs are now assumed to be created in the INIT state, with a
call to ib_modify_qp() required to bring the queue pair to the RTS
state.
ib_modify_qp() no longer takes a modification list; callers should
modify the relevant queue pair parameters (e.g. qkey) directly and
then call ib_modify_qp() to synchronise the changes to the hardware.
The packet sequence number is now a property of the queue pair, rather
than of the device.
Each queue pair may have an associated address vector. For RC queue
pairs, this is the address vector that will be programmed in to the
hardware as the remote address. For UD queue pairs, it will be used
as the default address vector if none is supplied to ib_post_send().
[infiniband] Make qkey and rate optional parameters to ib_post_send()
The queue key is stored as a property of the queue pair, and so can
optionally be added by the Infiniband core at the time of calling
ib_post_send(), rather than always having to be specified by the
caller.
This allows IPoIB to avoid explicitly keeping track of the data queue
key.
[ipoib] Clarify new role of IPoIB peer cache as for MAC addresses only
Now that path record lookups are handled entirely via
ib_resolve_path(), the only role of the IPoIB peer cache is as a
lookup table for MAC addresses. Update the code structure and
comments to reflect this.
The IPoIB broadcast MAC address varies according to the partition key.
Now that the broadcast MAC address is a property of the network device
rather than of the link layer, we can expose this real MAC address
directly.
The broadcast LID is now identified via a path record lookup; this is
marginally inefficient (since it was present in the MCMemberRecord
GetResponse), but avoids the need to special-case broadcasts when
constructing the address vector in ipoib_transmit().
Currently, all Infiniband users must create a process for polling
their completion queues (or rely on a regular hook such as
netdev_poll() in ipoib.c).
Move instead to a model whereby the Infiniband core maintains a single
process calling ib_poll_eq(), and polling the event queue triggers
polls of the applicable completion queues. (At present, the
Infiniband core simply polls all of the device's completion queues.)
Polling a completion queue will now implicitly refill all attached
receive work queues; this is analogous to the way that netdev_poll()
implicitly refills the RX ring.
Infiniband users no longer need to create a process just to poll their
completion queues and refill their receive rings.
[infiniband] Centralise assumption of 2048-byte payloads
IPoIB and the SMA have separate constants for the packet size to be
used to I/O buffer allocations. Merge these into the single
IB_MAX_PAYLOAD_SIZE constant.
(Various other points in the Infiniband stack have hard-coded
assumptions of a 2048-byte payload; we don't currently support
variable MTUs.)
[netdevice] Make ll_broadcast per-netdevice rather than per-ll_protocol
IPoIB has a link-layer broadcast address that varies according to the
partition key. We currently go through several contortions to pretend
that the link-layer address is a fixed constant; by making the
broadcast address a property of the network device rather than the
link-layer protocol it will be possible to simplify IPoIB's broadcast
handling.
[ata] Make ATA command issuing partially asynchronous
Move the icky call to step() from aoe.c to ata.c; this takes it at
least one step further away from where it really doesn't belong.
Unfortunately, AoE has the ugly aoe_discover() mechanism which means
that we still have a step() loop in aoe.c for now; this needs to be
replaced at some future point.
[netdevice] Add netdev argument to link-layer push and pull handlers
In order to construct outgoing link-layer frames or parse incoming
ones properly, some protocols (such as 802.11) need more state than is
available in the existing variables passed to the link-layer protocol
handlers. To remedy this, add struct net_device *netdev as the first
argument to each of these functions, so that more information can be
fetched from the link layer-private part of the network device.
Updated all three call sites (netdevice.c, efi_snp.c, pxe_undi.c) and
both implementations (ethernet.c, ipoib.c) of ll_protocol to use the
new argument.
Signed-off-by: Michael Brown <mcb30@etherboot.org>
[spi] Add address-length autodetection to the SPI bit-bashing code
Several SPI chips will respond to an SPI read command with a dummy
zero bit immediately prior to the first real data bit. This can be
used to autodetect the address length, provided that the command
length and data length are already known, and that the MISO data line
is tied high.
Tested-by: Thomas Miletich <thomas.miletich@gmail.com>
Debugged-by: Thomas Miletich <thomas.miletich@gmail.com>
The pcnet32 driver mismanages its RX buffers, with the result that
packets get corrupted if more than one packet arrives between calls to
poll().
Originally-fixed-by: Bill Lortz <Bill.Lortz@premier.org>
Reviewed-by: Stefan Hajnoczi <stefanha@gmail.com>
Tested-by: Stefan Hajnoczi <stefanha@gmail.com>
Also adds the MAC_ADDR_CORRECT flag, to indicate whether or not the
MAC address needs to be fixed up by the driver.
Signed-off-by: Michael Brown <mcb30@etherboot.org>