You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

skge.c 64KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469
  1. /*
  2. * iPXE driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Derived from Linux skge driver (v1.13), which was
  4. * based on earlier sk98lin, e100 and FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features of the
  7. * original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * Modified for iPXE, July 2008 by Michael Decker <mrd999@gmail.com>
  13. * Tested and Modified in December 2009 by
  14. * Thomas Miletich <thomas.miletich@gmail.com>
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License as published by
  18. * the Free Software Foundation; either version 2 of the License.
  19. *
  20. * This program is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  23. * GNU General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public License
  26. * along with this program; if not, write to the Free Software
  27. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  28. * 02110-1301, USA.
  29. */
  30. FILE_LICENCE ( GPL2_ONLY );
  31. #include <stdint.h>
  32. #include <errno.h>
  33. #include <stdio.h>
  34. #include <unistd.h>
  35. #include <ipxe/netdevice.h>
  36. #include <ipxe/ethernet.h>
  37. #include <ipxe/if_ether.h>
  38. #include <ipxe/iobuf.h>
  39. #include <ipxe/malloc.h>
  40. #include <ipxe/pci.h>
  41. #include "skge.h"
  42. static struct pci_device_id skge_id_table[] = {
  43. PCI_ROM(0x10b7, 0x1700, "3C940", "3COM 3C940", 0),
  44. PCI_ROM(0x10b7, 0x80eb, "3C940B", "3COM 3C940", 0),
  45. PCI_ROM(0x1148, 0x4300, "GE", "Syskonnect GE", 0),
  46. PCI_ROM(0x1148, 0x4320, "YU", "Syskonnect YU", 0),
  47. PCI_ROM(0x1186, 0x4C00, "DGE510T", "DLink DGE-510T", 0),
  48. PCI_ROM(0x1186, 0x4b01, "DGE530T", "DLink DGE-530T", 0),
  49. PCI_ROM(0x11ab, 0x4320, "id4320", "Marvell id4320", 0),
  50. PCI_ROM(0x11ab, 0x5005, "id5005", "Marvell id5005", 0), /* Belkin */
  51. PCI_ROM(0x1371, 0x434e, "Gigacard", "CNET Gigacard", 0),
  52. PCI_ROM(0x1737, 0x1064, "EG1064", "Linksys EG1064", 0),
  53. PCI_ROM(0x1737, 0xffff, "id_any", "Linksys [any]", 0)
  54. };
  55. static int skge_up(struct net_device *dev);
  56. static void skge_down(struct net_device *dev);
  57. static void skge_tx_clean(struct net_device *dev);
  58. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  59. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  60. static void yukon_init(struct skge_hw *hw, int port);
  61. static void genesis_mac_init(struct skge_hw *hw, int port);
  62. static void genesis_link_up(struct skge_port *skge);
  63. static void skge_phyirq(struct skge_hw *hw);
  64. static void skge_poll(struct net_device *dev);
  65. static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob);
  66. static void skge_net_irq ( struct net_device *dev, int enable );
  67. static void skge_rx_refill(struct net_device *dev);
  68. static struct net_device_operations skge_operations = {
  69. .open = skge_up,
  70. .close = skge_down,
  71. .transmit = skge_xmit_frame,
  72. .poll = skge_poll,
  73. .irq = skge_net_irq
  74. };
  75. /* Avoid conditionals by using array */
  76. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  77. static const int rxqaddr[] = { Q_R1, Q_R2 };
  78. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  79. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  80. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  81. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  82. /* Determine supported/advertised modes based on hardware.
  83. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  84. */
  85. static u32 skge_supported_modes(const struct skge_hw *hw)
  86. {
  87. u32 supported;
  88. if (hw->copper) {
  89. supported = SUPPORTED_10baseT_Half
  90. | SUPPORTED_10baseT_Full
  91. | SUPPORTED_100baseT_Half
  92. | SUPPORTED_100baseT_Full
  93. | SUPPORTED_1000baseT_Half
  94. | SUPPORTED_1000baseT_Full
  95. | SUPPORTED_Autoneg| SUPPORTED_TP;
  96. if (hw->chip_id == CHIP_ID_GENESIS)
  97. supported &= ~(SUPPORTED_10baseT_Half
  98. | SUPPORTED_10baseT_Full
  99. | SUPPORTED_100baseT_Half
  100. | SUPPORTED_100baseT_Full);
  101. else if (hw->chip_id == CHIP_ID_YUKON)
  102. supported &= ~SUPPORTED_1000baseT_Half;
  103. } else
  104. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  105. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  106. return supported;
  107. }
  108. /* Chip internal frequency for clock calculations */
  109. static inline u32 hwkhz(const struct skge_hw *hw)
  110. {
  111. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  112. }
  113. /* Microseconds to chip HZ */
  114. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  115. {
  116. return hwkhz(hw) * usec / 1000;
  117. }
  118. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  119. static void skge_led(struct skge_port *skge, enum led_mode mode)
  120. {
  121. struct skge_hw *hw = skge->hw;
  122. int port = skge->port;
  123. if (hw->chip_id == CHIP_ID_GENESIS) {
  124. switch (mode) {
  125. case LED_MODE_OFF:
  126. if (hw->phy_type == SK_PHY_BCOM)
  127. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  128. else {
  129. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  130. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  131. }
  132. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  133. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  134. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  135. break;
  136. case LED_MODE_ON:
  137. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  138. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  139. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  140. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  141. break;
  142. case LED_MODE_TST:
  143. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  144. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  145. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  146. if (hw->phy_type == SK_PHY_BCOM)
  147. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  148. else {
  149. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  150. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  151. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  152. }
  153. }
  154. } else {
  155. switch (mode) {
  156. case LED_MODE_OFF:
  157. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  158. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  159. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  160. PHY_M_LED_MO_10(MO_LED_OFF) |
  161. PHY_M_LED_MO_100(MO_LED_OFF) |
  162. PHY_M_LED_MO_1000(MO_LED_OFF) |
  163. PHY_M_LED_MO_RX(MO_LED_OFF));
  164. break;
  165. case LED_MODE_ON:
  166. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  167. PHY_M_LED_PULS_DUR(PULS_170MS) |
  168. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  169. PHY_M_LEDC_TX_CTRL |
  170. PHY_M_LEDC_DP_CTRL);
  171. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  172. PHY_M_LED_MO_RX(MO_LED_OFF) |
  173. (skge->speed == SPEED_100 ?
  174. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  175. break;
  176. case LED_MODE_TST:
  177. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  178. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  179. PHY_M_LED_MO_DUP(MO_LED_ON) |
  180. PHY_M_LED_MO_10(MO_LED_ON) |
  181. PHY_M_LED_MO_100(MO_LED_ON) |
  182. PHY_M_LED_MO_1000(MO_LED_ON) |
  183. PHY_M_LED_MO_RX(MO_LED_ON));
  184. }
  185. }
  186. }
  187. /*
  188. * I've left in these EEPROM and VPD functions, as someone may desire to
  189. * integrate them in the future. -mdeck
  190. *
  191. * static int skge_get_eeprom_len(struct net_device *dev)
  192. * {
  193. * struct skge_port *skge = netdev_priv(dev);
  194. * u32 reg2;
  195. *
  196. * pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  197. * return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  198. * }
  199. *
  200. * static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  201. * {
  202. * u32 val;
  203. *
  204. * pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  205. *
  206. * do {
  207. * pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  208. * } while (!(offset & PCI_VPD_ADDR_F));
  209. *
  210. * pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  211. * return val;
  212. * }
  213. *
  214. * static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  215. * {
  216. * pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  217. * pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  218. * offset | PCI_VPD_ADDR_F);
  219. *
  220. * do {
  221. * pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  222. * } while (offset & PCI_VPD_ADDR_F);
  223. * }
  224. *
  225. * static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  226. * u8 *data)
  227. * {
  228. * struct skge_port *skge = netdev_priv(dev);
  229. * struct pci_dev *pdev = skge->hw->pdev;
  230. * int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  231. * int length = eeprom->len;
  232. * u16 offset = eeprom->offset;
  233. *
  234. * if (!cap)
  235. * return -EINVAL;
  236. *
  237. * eeprom->magic = SKGE_EEPROM_MAGIC;
  238. *
  239. * while (length > 0) {
  240. * u32 val = skge_vpd_read(pdev, cap, offset);
  241. * int n = min_t(int, length, sizeof(val));
  242. *
  243. * memcpy(data, &val, n);
  244. * length -= n;
  245. * data += n;
  246. * offset += n;
  247. * }
  248. * return 0;
  249. * }
  250. *
  251. * static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  252. * u8 *data)
  253. * {
  254. * struct skge_port *skge = netdev_priv(dev);
  255. * struct pci_dev *pdev = skge->hw->pdev;
  256. * int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  257. * int length = eeprom->len;
  258. * u16 offset = eeprom->offset;
  259. *
  260. * if (!cap)
  261. * return -EINVAL;
  262. *
  263. * if (eeprom->magic != SKGE_EEPROM_MAGIC)
  264. * return -EINVAL;
  265. *
  266. * while (length > 0) {
  267. * u32 val;
  268. * int n = min_t(int, length, sizeof(val));
  269. *
  270. * if (n < sizeof(val))
  271. * val = skge_vpd_read(pdev, cap, offset);
  272. * memcpy(&val, data, n);
  273. *
  274. * skge_vpd_write(pdev, cap, offset, val);
  275. *
  276. * length -= n;
  277. * data += n;
  278. * offset += n;
  279. * }
  280. * return 0;
  281. * }
  282. */
  283. /*
  284. * Allocate ring elements and chain them together
  285. * One-to-one association of board descriptors with ring elements
  286. */
  287. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base,
  288. size_t num)
  289. {
  290. struct skge_tx_desc *d;
  291. struct skge_element *e;
  292. unsigned int i;
  293. ring->start = zalloc(num*sizeof(*e));
  294. if (!ring->start)
  295. return -ENOMEM;
  296. for (i = 0, e = ring->start, d = vaddr; i < num; i++, e++, d++) {
  297. e->desc = d;
  298. if (i == num - 1) {
  299. e->next = ring->start;
  300. d->next_offset = base;
  301. } else {
  302. e->next = e + 1;
  303. d->next_offset = base + (i+1) * sizeof(*d);
  304. }
  305. }
  306. ring->to_use = ring->to_clean = ring->start;
  307. return 0;
  308. }
  309. /* Allocate and setup a new buffer for receiving */
  310. static void skge_rx_setup(struct skge_port *skge __unused,
  311. struct skge_element *e,
  312. struct io_buffer *iob, unsigned int bufsize)
  313. {
  314. struct skge_rx_desc *rd = e->desc;
  315. u64 map;
  316. map = ( iob != NULL ) ? virt_to_bus(iob->data) : 0;
  317. rd->dma_lo = map;
  318. rd->dma_hi = map >> 32;
  319. e->iob = iob;
  320. rd->csum1_start = ETH_HLEN;
  321. rd->csum2_start = ETH_HLEN;
  322. rd->csum1 = 0;
  323. rd->csum2 = 0;
  324. wmb();
  325. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  326. }
  327. /* Resume receiving using existing skb,
  328. * Note: DMA address is not changed by chip.
  329. * MTU not changed while receiver active.
  330. */
  331. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  332. {
  333. struct skge_rx_desc *rd = e->desc;
  334. rd->csum2 = 0;
  335. rd->csum2_start = ETH_HLEN;
  336. wmb();
  337. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  338. }
  339. /* Free all buffers in receive ring, assumes receiver stopped */
  340. static void skge_rx_clean(struct skge_port *skge)
  341. {
  342. struct skge_ring *ring = &skge->rx_ring;
  343. struct skge_element *e;
  344. e = ring->start;
  345. do {
  346. struct skge_rx_desc *rd = e->desc;
  347. rd->control = 0;
  348. if (e->iob) {
  349. free_iob(e->iob);
  350. e->iob = NULL;
  351. }
  352. } while ((e = e->next) != ring->start);
  353. }
  354. static void skge_link_up(struct skge_port *skge)
  355. {
  356. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  357. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  358. netdev_link_up(skge->netdev);
  359. DBG2(PFX "%s: Link is up at %d Mbps, %s duplex\n",
  360. skge->netdev->name, skge->speed,
  361. skge->duplex == DUPLEX_FULL ? "full" : "half");
  362. }
  363. static void skge_link_down(struct skge_port *skge)
  364. {
  365. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  366. netdev_link_down(skge->netdev);
  367. DBG2(PFX "%s: Link is down.\n", skge->netdev->name);
  368. }
  369. static void xm_link_down(struct skge_hw *hw, int port)
  370. {
  371. struct net_device *dev = hw->dev[port];
  372. struct skge_port *skge = netdev_priv(dev);
  373. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  374. if (netdev_link_ok(dev))
  375. skge_link_down(skge);
  376. }
  377. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  378. {
  379. int i;
  380. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  381. *val = xm_read16(hw, port, XM_PHY_DATA);
  382. if (hw->phy_type == SK_PHY_XMAC)
  383. goto ready;
  384. for (i = 0; i < PHY_RETRIES; i++) {
  385. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  386. goto ready;
  387. udelay(1);
  388. }
  389. return -ETIMEDOUT;
  390. ready:
  391. *val = xm_read16(hw, port, XM_PHY_DATA);
  392. return 0;
  393. }
  394. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  395. {
  396. u16 v = 0;
  397. if (__xm_phy_read(hw, port, reg, &v))
  398. DBG(PFX "%s: phy read timed out\n",
  399. hw->dev[port]->name);
  400. return v;
  401. }
  402. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  403. {
  404. int i;
  405. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  406. for (i = 0; i < PHY_RETRIES; i++) {
  407. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  408. goto ready;
  409. udelay(1);
  410. }
  411. return -EIO;
  412. ready:
  413. xm_write16(hw, port, XM_PHY_DATA, val);
  414. for (i = 0; i < PHY_RETRIES; i++) {
  415. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  416. return 0;
  417. udelay(1);
  418. }
  419. return -ETIMEDOUT;
  420. }
  421. static void genesis_init(struct skge_hw *hw)
  422. {
  423. /* set blink source counter */
  424. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  425. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  426. /* configure mac arbiter */
  427. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  428. /* configure mac arbiter timeout values */
  429. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  430. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  431. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  432. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  433. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  434. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  435. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  436. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  437. /* configure packet arbiter timeout */
  438. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  439. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  440. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  441. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  442. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  443. }
  444. static void genesis_reset(struct skge_hw *hw, int port)
  445. {
  446. const u8 zero[8] = { 0 };
  447. u32 reg;
  448. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  449. /* reset the statistics module */
  450. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  451. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  452. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  453. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  454. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  455. /* disable Broadcom PHY IRQ */
  456. if (hw->phy_type == SK_PHY_BCOM)
  457. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  458. xm_outhash(hw, port, XM_HSM, zero);
  459. /* Flush TX and RX fifo */
  460. reg = xm_read32(hw, port, XM_MODE);
  461. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  462. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  463. }
  464. /* Convert mode to MII values */
  465. static const u16 phy_pause_map[] = {
  466. [FLOW_MODE_NONE] = 0,
  467. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  468. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  469. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  470. };
  471. /* special defines for FIBER (88E1011S only) */
  472. static const u16 fiber_pause_map[] = {
  473. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  474. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  475. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  476. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  477. };
  478. /* Check status of Broadcom phy link */
  479. static void bcom_check_link(struct skge_hw *hw, int port)
  480. {
  481. struct net_device *dev = hw->dev[port];
  482. struct skge_port *skge = netdev_priv(dev);
  483. u16 status;
  484. /* read twice because of latch */
  485. xm_phy_read(hw, port, PHY_BCOM_STAT);
  486. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  487. if ((status & PHY_ST_LSYNC) == 0) {
  488. xm_link_down(hw, port);
  489. return;
  490. }
  491. if (skge->autoneg == AUTONEG_ENABLE) {
  492. u16 lpa, aux;
  493. if (!(status & PHY_ST_AN_OVER))
  494. return;
  495. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  496. if (lpa & PHY_B_AN_RF) {
  497. DBG(PFX "%s: remote fault\n",
  498. dev->name);
  499. return;
  500. }
  501. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  502. /* Check Duplex mismatch */
  503. switch (aux & PHY_B_AS_AN_RES_MSK) {
  504. case PHY_B_RES_1000FD:
  505. skge->duplex = DUPLEX_FULL;
  506. break;
  507. case PHY_B_RES_1000HD:
  508. skge->duplex = DUPLEX_HALF;
  509. break;
  510. default:
  511. DBG(PFX "%s: duplex mismatch\n",
  512. dev->name);
  513. return;
  514. }
  515. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  516. switch (aux & PHY_B_AS_PAUSE_MSK) {
  517. case PHY_B_AS_PAUSE_MSK:
  518. skge->flow_status = FLOW_STAT_SYMMETRIC;
  519. break;
  520. case PHY_B_AS_PRR:
  521. skge->flow_status = FLOW_STAT_REM_SEND;
  522. break;
  523. case PHY_B_AS_PRT:
  524. skge->flow_status = FLOW_STAT_LOC_SEND;
  525. break;
  526. default:
  527. skge->flow_status = FLOW_STAT_NONE;
  528. }
  529. skge->speed = SPEED_1000;
  530. }
  531. if (!netdev_link_ok(dev))
  532. genesis_link_up(skge);
  533. }
  534. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  535. * Phy on for 100 or 10Mbit operation
  536. */
  537. static void bcom_phy_init(struct skge_port *skge)
  538. {
  539. struct skge_hw *hw = skge->hw;
  540. int port = skge->port;
  541. unsigned int i;
  542. u16 id1, r, ext, ctl;
  543. /* magic workaround patterns for Broadcom */
  544. static const struct {
  545. u16 reg;
  546. u16 val;
  547. } A1hack[] = {
  548. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  549. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  550. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  551. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  552. }, C0hack[] = {
  553. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  554. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  555. };
  556. /* read Id from external PHY (all have the same address) */
  557. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  558. /* Optimize MDIO transfer by suppressing preamble. */
  559. r = xm_read16(hw, port, XM_MMU_CMD);
  560. r |= XM_MMU_NO_PRE;
  561. xm_write16(hw, port, XM_MMU_CMD,r);
  562. switch (id1) {
  563. case PHY_BCOM_ID1_C0:
  564. /*
  565. * Workaround BCOM Errata for the C0 type.
  566. * Write magic patterns to reserved registers.
  567. */
  568. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  569. xm_phy_write(hw, port,
  570. C0hack[i].reg, C0hack[i].val);
  571. break;
  572. case PHY_BCOM_ID1_A1:
  573. /*
  574. * Workaround BCOM Errata for the A1 type.
  575. * Write magic patterns to reserved registers.
  576. */
  577. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  578. xm_phy_write(hw, port,
  579. A1hack[i].reg, A1hack[i].val);
  580. break;
  581. }
  582. /*
  583. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  584. * Disable Power Management after reset.
  585. */
  586. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  587. r |= PHY_B_AC_DIS_PM;
  588. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  589. /* Dummy read */
  590. xm_read16(hw, port, XM_ISRC);
  591. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  592. ctl = PHY_CT_SP1000; /* always 1000mbit */
  593. if (skge->autoneg == AUTONEG_ENABLE) {
  594. /*
  595. * Workaround BCOM Errata #1 for the C5 type.
  596. * 1000Base-T Link Acquisition Failure in Slave Mode
  597. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  598. */
  599. u16 adv = PHY_B_1000C_RD;
  600. if (skge->advertising & ADVERTISED_1000baseT_Half)
  601. adv |= PHY_B_1000C_AHD;
  602. if (skge->advertising & ADVERTISED_1000baseT_Full)
  603. adv |= PHY_B_1000C_AFD;
  604. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  605. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  606. } else {
  607. if (skge->duplex == DUPLEX_FULL)
  608. ctl |= PHY_CT_DUP_MD;
  609. /* Force to slave */
  610. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  611. }
  612. /* Set autonegotiation pause parameters */
  613. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  614. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  615. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  616. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  617. /* Use link status change interrupt */
  618. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  619. }
  620. static void xm_phy_init(struct skge_port *skge)
  621. {
  622. struct skge_hw *hw = skge->hw;
  623. int port = skge->port;
  624. u16 ctrl = 0;
  625. if (skge->autoneg == AUTONEG_ENABLE) {
  626. if (skge->advertising & ADVERTISED_1000baseT_Half)
  627. ctrl |= PHY_X_AN_HD;
  628. if (skge->advertising & ADVERTISED_1000baseT_Full)
  629. ctrl |= PHY_X_AN_FD;
  630. ctrl |= fiber_pause_map[skge->flow_control];
  631. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  632. /* Restart Auto-negotiation */
  633. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  634. } else {
  635. /* Set DuplexMode in Config register */
  636. if (skge->duplex == DUPLEX_FULL)
  637. ctrl |= PHY_CT_DUP_MD;
  638. /*
  639. * Do NOT enable Auto-negotiation here. This would hold
  640. * the link down because no IDLEs are transmitted
  641. */
  642. }
  643. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  644. /* Poll PHY for status changes */
  645. skge->use_xm_link_timer = 1;
  646. }
  647. static int xm_check_link(struct net_device *dev)
  648. {
  649. struct skge_port *skge = netdev_priv(dev);
  650. struct skge_hw *hw = skge->hw;
  651. int port = skge->port;
  652. u16 status;
  653. /* read twice because of latch */
  654. xm_phy_read(hw, port, PHY_XMAC_STAT);
  655. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  656. if ((status & PHY_ST_LSYNC) == 0) {
  657. xm_link_down(hw, port);
  658. return 0;
  659. }
  660. if (skge->autoneg == AUTONEG_ENABLE) {
  661. u16 lpa, res;
  662. if (!(status & PHY_ST_AN_OVER))
  663. return 0;
  664. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  665. if (lpa & PHY_B_AN_RF) {
  666. DBG(PFX "%s: remote fault\n",
  667. dev->name);
  668. return 0;
  669. }
  670. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  671. /* Check Duplex mismatch */
  672. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  673. case PHY_X_RS_FD:
  674. skge->duplex = DUPLEX_FULL;
  675. break;
  676. case PHY_X_RS_HD:
  677. skge->duplex = DUPLEX_HALF;
  678. break;
  679. default:
  680. DBG(PFX "%s: duplex mismatch\n",
  681. dev->name);
  682. return 0;
  683. }
  684. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  685. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  686. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  687. (lpa & PHY_X_P_SYM_MD))
  688. skge->flow_status = FLOW_STAT_SYMMETRIC;
  689. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  690. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  691. /* Enable PAUSE receive, disable PAUSE transmit */
  692. skge->flow_status = FLOW_STAT_REM_SEND;
  693. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  694. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  695. /* Disable PAUSE receive, enable PAUSE transmit */
  696. skge->flow_status = FLOW_STAT_LOC_SEND;
  697. else
  698. skge->flow_status = FLOW_STAT_NONE;
  699. skge->speed = SPEED_1000;
  700. }
  701. if (!netdev_link_ok(dev))
  702. genesis_link_up(skge);
  703. return 1;
  704. }
  705. /* Poll to check for link coming up.
  706. *
  707. * Since internal PHY is wired to a level triggered pin, can't
  708. * get an interrupt when carrier is detected, need to poll for
  709. * link coming up.
  710. */
  711. static void xm_link_timer(struct skge_port *skge)
  712. {
  713. struct net_device *dev = skge->netdev;
  714. struct skge_hw *hw = skge->hw;
  715. int port = skge->port;
  716. int i;
  717. /*
  718. * Verify that the link by checking GPIO register three times.
  719. * This pin has the signal from the link_sync pin connected to it.
  720. */
  721. for (i = 0; i < 3; i++) {
  722. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  723. return;
  724. }
  725. /* Re-enable interrupt to detect link down */
  726. if (xm_check_link(dev)) {
  727. u16 msk = xm_read16(hw, port, XM_IMSK);
  728. msk &= ~XM_IS_INP_ASS;
  729. xm_write16(hw, port, XM_IMSK, msk);
  730. xm_read16(hw, port, XM_ISRC);
  731. }
  732. }
  733. static void genesis_mac_init(struct skge_hw *hw, int port)
  734. {
  735. struct net_device *dev = hw->dev[port];
  736. struct skge_port *skge = netdev_priv(dev);
  737. int i;
  738. u32 r;
  739. const u8 zero[6] = { 0 };
  740. for (i = 0; i < 10; i++) {
  741. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  742. MFF_SET_MAC_RST);
  743. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  744. goto reset_ok;
  745. udelay(1);
  746. }
  747. DBG(PFX "%s: genesis reset failed\n", dev->name);
  748. reset_ok:
  749. /* Unreset the XMAC. */
  750. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  751. /*
  752. * Perform additional initialization for external PHYs,
  753. * namely for the 1000baseTX cards that use the XMAC's
  754. * GMII mode.
  755. */
  756. if (hw->phy_type != SK_PHY_XMAC) {
  757. /* Take external Phy out of reset */
  758. r = skge_read32(hw, B2_GP_IO);
  759. if (port == 0)
  760. r |= GP_DIR_0|GP_IO_0;
  761. else
  762. r |= GP_DIR_2|GP_IO_2;
  763. skge_write32(hw, B2_GP_IO, r);
  764. /* Enable GMII interface */
  765. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  766. }
  767. switch(hw->phy_type) {
  768. case SK_PHY_XMAC:
  769. xm_phy_init(skge);
  770. break;
  771. case SK_PHY_BCOM:
  772. bcom_phy_init(skge);
  773. bcom_check_link(hw, port);
  774. }
  775. /* Set Station Address */
  776. xm_outaddr(hw, port, XM_SA, dev->ll_addr);
  777. /* We don't use match addresses so clear */
  778. for (i = 1; i < 16; i++)
  779. xm_outaddr(hw, port, XM_EXM(i), zero);
  780. /* Clear MIB counters */
  781. xm_write16(hw, port, XM_STAT_CMD,
  782. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  783. /* Clear two times according to Errata #3 */
  784. xm_write16(hw, port, XM_STAT_CMD,
  785. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  786. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  787. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  788. /* We don't need the FCS appended to the packet. */
  789. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  790. if (skge->duplex == DUPLEX_HALF) {
  791. /*
  792. * If in manual half duplex mode the other side might be in
  793. * full duplex mode, so ignore if a carrier extension is not seen
  794. * on frames received
  795. */
  796. r |= XM_RX_DIS_CEXT;
  797. }
  798. xm_write16(hw, port, XM_RX_CMD, r);
  799. /* We want short frames padded to 60 bytes. */
  800. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  801. xm_write16(hw, port, XM_TX_THR, 512);
  802. /*
  803. * Enable the reception of all error frames. This is is
  804. * a necessary evil due to the design of the XMAC. The
  805. * XMAC's receive FIFO is only 8K in size, however jumbo
  806. * frames can be up to 9000 bytes in length. When bad
  807. * frame filtering is enabled, the XMAC's RX FIFO operates
  808. * in 'store and forward' mode. For this to work, the
  809. * entire frame has to fit into the FIFO, but that means
  810. * that jumbo frames larger than 8192 bytes will be
  811. * truncated. Disabling all bad frame filtering causes
  812. * the RX FIFO to operate in streaming mode, in which
  813. * case the XMAC will start transferring frames out of the
  814. * RX FIFO as soon as the FIFO threshold is reached.
  815. */
  816. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  817. /*
  818. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  819. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  820. * and 'Octets Rx OK Hi Cnt Ov'.
  821. */
  822. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  823. /*
  824. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  825. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  826. * and 'Octets Tx OK Hi Cnt Ov'.
  827. */
  828. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  829. /* Configure MAC arbiter */
  830. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  831. /* configure timeout values */
  832. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  833. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  834. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  835. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  836. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  837. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  838. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  839. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  840. /* Configure Rx MAC FIFO */
  841. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  842. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  843. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  844. /* Configure Tx MAC FIFO */
  845. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  846. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  847. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  848. /* enable timeout timers */
  849. skge_write16(hw, B3_PA_CTRL,
  850. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  851. }
  852. static void genesis_stop(struct skge_port *skge)
  853. {
  854. struct skge_hw *hw = skge->hw;
  855. int port = skge->port;
  856. unsigned retries = 1000;
  857. u16 cmd;
  858. /* Disable Tx and Rx */
  859. cmd = xm_read16(hw, port, XM_MMU_CMD);
  860. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  861. xm_write16(hw, port, XM_MMU_CMD, cmd);
  862. genesis_reset(hw, port);
  863. /* Clear Tx packet arbiter timeout IRQ */
  864. skge_write16(hw, B3_PA_CTRL,
  865. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  866. /* Reset the MAC */
  867. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  868. do {
  869. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  870. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  871. break;
  872. } while (--retries > 0);
  873. /* For external PHYs there must be special handling */
  874. if (hw->phy_type != SK_PHY_XMAC) {
  875. u32 reg = skge_read32(hw, B2_GP_IO);
  876. if (port == 0) {
  877. reg |= GP_DIR_0;
  878. reg &= ~GP_IO_0;
  879. } else {
  880. reg |= GP_DIR_2;
  881. reg &= ~GP_IO_2;
  882. }
  883. skge_write32(hw, B2_GP_IO, reg);
  884. skge_read32(hw, B2_GP_IO);
  885. }
  886. xm_write16(hw, port, XM_MMU_CMD,
  887. xm_read16(hw, port, XM_MMU_CMD)
  888. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  889. xm_read16(hw, port, XM_MMU_CMD);
  890. }
  891. static void genesis_link_up(struct skge_port *skge)
  892. {
  893. struct skge_hw *hw = skge->hw;
  894. int port = skge->port;
  895. u16 cmd, msk;
  896. u32 mode;
  897. cmd = xm_read16(hw, port, XM_MMU_CMD);
  898. /*
  899. * enabling pause frame reception is required for 1000BT
  900. * because the XMAC is not reset if the link is going down
  901. */
  902. if (skge->flow_status == FLOW_STAT_NONE ||
  903. skge->flow_status == FLOW_STAT_LOC_SEND)
  904. /* Disable Pause Frame Reception */
  905. cmd |= XM_MMU_IGN_PF;
  906. else
  907. /* Enable Pause Frame Reception */
  908. cmd &= ~XM_MMU_IGN_PF;
  909. xm_write16(hw, port, XM_MMU_CMD, cmd);
  910. mode = xm_read32(hw, port, XM_MODE);
  911. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  912. skge->flow_status == FLOW_STAT_LOC_SEND) {
  913. /*
  914. * Configure Pause Frame Generation
  915. * Use internal and external Pause Frame Generation.
  916. * Sending pause frames is edge triggered.
  917. * Send a Pause frame with the maximum pause time if
  918. * internal oder external FIFO full condition occurs.
  919. * Send a zero pause time frame to re-start transmission.
  920. */
  921. /* XM_PAUSE_DA = '010000C28001' (default) */
  922. /* XM_MAC_PTIME = 0xffff (maximum) */
  923. /* remember this value is defined in big endian (!) */
  924. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  925. mode |= XM_PAUSE_MODE;
  926. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  927. } else {
  928. /*
  929. * disable pause frame generation is required for 1000BT
  930. * because the XMAC is not reset if the link is going down
  931. */
  932. /* Disable Pause Mode in Mode Register */
  933. mode &= ~XM_PAUSE_MODE;
  934. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  935. }
  936. xm_write32(hw, port, XM_MODE, mode);
  937. /* Turn on detection of Tx underrun */
  938. msk = xm_read16(hw, port, XM_IMSK);
  939. msk &= ~XM_IS_TXF_UR;
  940. xm_write16(hw, port, XM_IMSK, msk);
  941. xm_read16(hw, port, XM_ISRC);
  942. /* get MMU Command Reg. */
  943. cmd = xm_read16(hw, port, XM_MMU_CMD);
  944. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  945. cmd |= XM_MMU_GMII_FD;
  946. /*
  947. * Workaround BCOM Errata (#10523) for all BCom Phys
  948. * Enable Power Management after link up
  949. */
  950. if (hw->phy_type == SK_PHY_BCOM) {
  951. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  952. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  953. & ~PHY_B_AC_DIS_PM);
  954. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  955. }
  956. /* enable Rx/Tx */
  957. xm_write16(hw, port, XM_MMU_CMD,
  958. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  959. skge_link_up(skge);
  960. }
  961. static inline void bcom_phy_intr(struct skge_port *skge)
  962. {
  963. struct skge_hw *hw = skge->hw;
  964. int port = skge->port;
  965. u16 isrc;
  966. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  967. DBGIO(PFX "%s: phy interrupt status 0x%x\n",
  968. skge->netdev->name, isrc);
  969. if (isrc & PHY_B_IS_PSE)
  970. DBG(PFX "%s: uncorrectable pair swap error\n",
  971. hw->dev[port]->name);
  972. /* Workaround BCom Errata:
  973. * enable and disable loopback mode if "NO HCD" occurs.
  974. */
  975. if (isrc & PHY_B_IS_NO_HDCL) {
  976. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  977. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  978. ctrl | PHY_CT_LOOP);
  979. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  980. ctrl & ~PHY_CT_LOOP);
  981. }
  982. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  983. bcom_check_link(hw, port);
  984. }
  985. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  986. {
  987. int i;
  988. gma_write16(hw, port, GM_SMI_DATA, val);
  989. gma_write16(hw, port, GM_SMI_CTRL,
  990. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  991. for (i = 0; i < PHY_RETRIES; i++) {
  992. udelay(1);
  993. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  994. return 0;
  995. }
  996. DBG(PFX "%s: phy write timeout port %x reg %x val %x\n",
  997. hw->dev[port]->name,
  998. port, reg, val);
  999. return -EIO;
  1000. }
  1001. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1002. {
  1003. int i;
  1004. gma_write16(hw, port, GM_SMI_CTRL,
  1005. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1006. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1007. for (i = 0; i < PHY_RETRIES; i++) {
  1008. udelay(1);
  1009. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1010. goto ready;
  1011. }
  1012. return -ETIMEDOUT;
  1013. ready:
  1014. *val = gma_read16(hw, port, GM_SMI_DATA);
  1015. return 0;
  1016. }
  1017. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1018. {
  1019. u16 v = 0;
  1020. if (__gm_phy_read(hw, port, reg, &v))
  1021. DBG(PFX "%s: phy read timeout port %x reg %x val %x\n",
  1022. hw->dev[port]->name,
  1023. port, reg, v);
  1024. return v;
  1025. }
  1026. /* Marvell Phy Initialization */
  1027. static void yukon_init(struct skge_hw *hw, int port)
  1028. {
  1029. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1030. u16 ctrl, ct1000, adv;
  1031. if (skge->autoneg == AUTONEG_ENABLE) {
  1032. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1033. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1034. PHY_M_EC_MAC_S_MSK);
  1035. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1036. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1037. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1038. }
  1039. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1040. if (skge->autoneg == AUTONEG_DISABLE)
  1041. ctrl &= ~PHY_CT_ANE;
  1042. ctrl |= PHY_CT_RESET;
  1043. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1044. ctrl = 0;
  1045. ct1000 = 0;
  1046. adv = PHY_AN_CSMA;
  1047. if (skge->autoneg == AUTONEG_ENABLE) {
  1048. if (hw->copper) {
  1049. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1050. ct1000 |= PHY_M_1000C_AFD;
  1051. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1052. ct1000 |= PHY_M_1000C_AHD;
  1053. if (skge->advertising & ADVERTISED_100baseT_Full)
  1054. adv |= PHY_M_AN_100_FD;
  1055. if (skge->advertising & ADVERTISED_100baseT_Half)
  1056. adv |= PHY_M_AN_100_HD;
  1057. if (skge->advertising & ADVERTISED_10baseT_Full)
  1058. adv |= PHY_M_AN_10_FD;
  1059. if (skge->advertising & ADVERTISED_10baseT_Half)
  1060. adv |= PHY_M_AN_10_HD;
  1061. /* Set Flow-control capabilities */
  1062. adv |= phy_pause_map[skge->flow_control];
  1063. } else {
  1064. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1065. adv |= PHY_M_AN_1000X_AFD;
  1066. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1067. adv |= PHY_M_AN_1000X_AHD;
  1068. adv |= fiber_pause_map[skge->flow_control];
  1069. }
  1070. /* Restart Auto-negotiation */
  1071. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1072. } else {
  1073. /* forced speed/duplex settings */
  1074. ct1000 = PHY_M_1000C_MSE;
  1075. if (skge->duplex == DUPLEX_FULL)
  1076. ctrl |= PHY_CT_DUP_MD;
  1077. switch (skge->speed) {
  1078. case SPEED_1000:
  1079. ctrl |= PHY_CT_SP1000;
  1080. break;
  1081. case SPEED_100:
  1082. ctrl |= PHY_CT_SP100;
  1083. break;
  1084. }
  1085. ctrl |= PHY_CT_RESET;
  1086. }
  1087. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1088. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1089. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1090. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1091. if (skge->autoneg == AUTONEG_ENABLE)
  1092. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1093. else
  1094. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1095. }
  1096. static void yukon_reset(struct skge_hw *hw, int port)
  1097. {
  1098. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1099. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1100. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1101. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1102. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1103. gma_write16(hw, port, GM_RX_CTRL,
  1104. gma_read16(hw, port, GM_RX_CTRL)
  1105. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1106. }
  1107. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1108. static int is_yukon_lite_a0(struct skge_hw *hw)
  1109. {
  1110. u32 reg;
  1111. int ret;
  1112. if (hw->chip_id != CHIP_ID_YUKON)
  1113. return 0;
  1114. reg = skge_read32(hw, B2_FAR);
  1115. skge_write8(hw, B2_FAR + 3, 0xff);
  1116. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1117. skge_write32(hw, B2_FAR, reg);
  1118. return ret;
  1119. }
  1120. static void yukon_mac_init(struct skge_hw *hw, int port)
  1121. {
  1122. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1123. int i;
  1124. u32 reg;
  1125. const u8 *addr = hw->dev[port]->ll_addr;
  1126. /* WA code for COMA mode -- set PHY reset */
  1127. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1128. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1129. reg = skge_read32(hw, B2_GP_IO);
  1130. reg |= GP_DIR_9 | GP_IO_9;
  1131. skge_write32(hw, B2_GP_IO, reg);
  1132. }
  1133. /* hard reset */
  1134. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1135. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1136. /* WA code for COMA mode -- clear PHY reset */
  1137. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1138. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1139. reg = skge_read32(hw, B2_GP_IO);
  1140. reg |= GP_DIR_9;
  1141. reg &= ~GP_IO_9;
  1142. skge_write32(hw, B2_GP_IO, reg);
  1143. }
  1144. /* Set hardware config mode */
  1145. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1146. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1147. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1148. /* Clear GMC reset */
  1149. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1150. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1151. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1152. if (skge->autoneg == AUTONEG_DISABLE) {
  1153. reg = GM_GPCR_AU_ALL_DIS;
  1154. gma_write16(hw, port, GM_GP_CTRL,
  1155. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1156. switch (skge->speed) {
  1157. case SPEED_1000:
  1158. reg &= ~GM_GPCR_SPEED_100;
  1159. reg |= GM_GPCR_SPEED_1000;
  1160. break;
  1161. case SPEED_100:
  1162. reg &= ~GM_GPCR_SPEED_1000;
  1163. reg |= GM_GPCR_SPEED_100;
  1164. break;
  1165. case SPEED_10:
  1166. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1167. break;
  1168. }
  1169. if (skge->duplex == DUPLEX_FULL)
  1170. reg |= GM_GPCR_DUP_FULL;
  1171. } else
  1172. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1173. switch (skge->flow_control) {
  1174. case FLOW_MODE_NONE:
  1175. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1176. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1177. break;
  1178. case FLOW_MODE_LOC_SEND:
  1179. /* disable Rx flow-control */
  1180. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1181. break;
  1182. case FLOW_MODE_SYMMETRIC:
  1183. case FLOW_MODE_SYM_OR_REM:
  1184. /* enable Tx & Rx flow-control */
  1185. break;
  1186. }
  1187. gma_write16(hw, port, GM_GP_CTRL, reg);
  1188. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1189. yukon_init(hw, port);
  1190. /* MIB clear */
  1191. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1192. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1193. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1194. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1195. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1196. /* transmit control */
  1197. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1198. /* receive control reg: unicast + multicast + no FCS */
  1199. gma_write16(hw, port, GM_RX_CTRL,
  1200. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1201. /* transmit flow control */
  1202. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1203. /* transmit parameter */
  1204. gma_write16(hw, port, GM_TX_PARAM,
  1205. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1206. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1207. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1208. /* configure the Serial Mode Register */
  1209. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1210. | GM_SMOD_VLAN_ENA
  1211. | IPG_DATA_VAL(IPG_DATA_DEF);
  1212. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1213. /* physical address: used for pause frames */
  1214. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1215. /* virtual address for data */
  1216. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1217. /* enable interrupt mask for counter overflows */
  1218. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1219. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1220. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1221. /* Initialize Mac Fifo */
  1222. /* Configure Rx MAC FIFO */
  1223. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1224. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1225. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1226. if (is_yukon_lite_a0(hw))
  1227. reg &= ~GMF_RX_F_FL_ON;
  1228. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1229. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1230. /*
  1231. * because Pause Packet Truncation in GMAC is not working
  1232. * we have to increase the Flush Threshold to 64 bytes
  1233. * in order to flush pause packets in Rx FIFO on Yukon-1
  1234. */
  1235. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1236. /* Configure Tx MAC FIFO */
  1237. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1238. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1239. }
  1240. /* Go into power down mode */
  1241. static void yukon_suspend(struct skge_hw *hw, int port)
  1242. {
  1243. u16 ctrl;
  1244. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1245. ctrl |= PHY_M_PC_POL_R_DIS;
  1246. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1247. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1248. ctrl |= PHY_CT_RESET;
  1249. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1250. /* switch IEEE compatible power down mode on */
  1251. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1252. ctrl |= PHY_CT_PDOWN;
  1253. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1254. }
  1255. static void yukon_stop(struct skge_port *skge)
  1256. {
  1257. struct skge_hw *hw = skge->hw;
  1258. int port = skge->port;
  1259. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1260. yukon_reset(hw, port);
  1261. gma_write16(hw, port, GM_GP_CTRL,
  1262. gma_read16(hw, port, GM_GP_CTRL)
  1263. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1264. gma_read16(hw, port, GM_GP_CTRL);
  1265. yukon_suspend(hw, port);
  1266. /* set GPHY Control reset */
  1267. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1268. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1269. }
  1270. static u16 yukon_speed(const struct skge_hw *hw __unused, u16 aux)
  1271. {
  1272. switch (aux & PHY_M_PS_SPEED_MSK) {
  1273. case PHY_M_PS_SPEED_1000:
  1274. return SPEED_1000;
  1275. case PHY_M_PS_SPEED_100:
  1276. return SPEED_100;
  1277. default:
  1278. return SPEED_10;
  1279. }
  1280. }
  1281. static void yukon_link_up(struct skge_port *skge)
  1282. {
  1283. struct skge_hw *hw = skge->hw;
  1284. int port = skge->port;
  1285. u16 reg;
  1286. /* Enable Transmit FIFO Underrun */
  1287. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1288. reg = gma_read16(hw, port, GM_GP_CTRL);
  1289. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1290. reg |= GM_GPCR_DUP_FULL;
  1291. /* enable Rx/Tx */
  1292. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1293. gma_write16(hw, port, GM_GP_CTRL, reg);
  1294. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1295. skge_link_up(skge);
  1296. }
  1297. static void yukon_link_down(struct skge_port *skge)
  1298. {
  1299. struct skge_hw *hw = skge->hw;
  1300. int port = skge->port;
  1301. u16 ctrl;
  1302. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1303. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1304. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1305. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1306. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1307. ctrl |= PHY_M_AN_ASP;
  1308. /* restore Asymmetric Pause bit */
  1309. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1310. }
  1311. skge_link_down(skge);
  1312. yukon_init(hw, port);
  1313. }
  1314. static void yukon_phy_intr(struct skge_port *skge)
  1315. {
  1316. struct skge_hw *hw = skge->hw;
  1317. int port = skge->port;
  1318. const char *reason = NULL;
  1319. u16 istatus, phystat;
  1320. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1321. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1322. DBGIO(PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1323. skge->netdev->name, istatus, phystat);
  1324. if (istatus & PHY_M_IS_AN_COMPL) {
  1325. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1326. & PHY_M_AN_RF) {
  1327. reason = "remote fault";
  1328. goto failed;
  1329. }
  1330. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1331. reason = "master/slave fault";
  1332. goto failed;
  1333. }
  1334. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1335. reason = "speed/duplex";
  1336. goto failed;
  1337. }
  1338. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1339. ? DUPLEX_FULL : DUPLEX_HALF;
  1340. skge->speed = yukon_speed(hw, phystat);
  1341. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1342. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1343. case PHY_M_PS_PAUSE_MSK:
  1344. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1345. break;
  1346. case PHY_M_PS_RX_P_EN:
  1347. skge->flow_status = FLOW_STAT_REM_SEND;
  1348. break;
  1349. case PHY_M_PS_TX_P_EN:
  1350. skge->flow_status = FLOW_STAT_LOC_SEND;
  1351. break;
  1352. default:
  1353. skge->flow_status = FLOW_STAT_NONE;
  1354. }
  1355. if (skge->flow_status == FLOW_STAT_NONE ||
  1356. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1357. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1358. else
  1359. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1360. yukon_link_up(skge);
  1361. return;
  1362. }
  1363. if (istatus & PHY_M_IS_LSP_CHANGE)
  1364. skge->speed = yukon_speed(hw, phystat);
  1365. if (istatus & PHY_M_IS_DUP_CHANGE)
  1366. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1367. if (istatus & PHY_M_IS_LST_CHANGE) {
  1368. if (phystat & PHY_M_PS_LINK_UP)
  1369. yukon_link_up(skge);
  1370. else
  1371. yukon_link_down(skge);
  1372. }
  1373. return;
  1374. failed:
  1375. DBG(PFX "%s: autonegotiation failed (%s)\n",
  1376. skge->netdev->name, reason);
  1377. /* XXX restart autonegotiation? */
  1378. }
  1379. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1380. {
  1381. u32 end;
  1382. start /= 8;
  1383. len /= 8;
  1384. end = start + len - 1;
  1385. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1386. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1387. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1388. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1389. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1390. if (q == Q_R1 || q == Q_R2) {
  1391. /* Set thresholds on receive queue's */
  1392. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1393. start + (2*len)/3);
  1394. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1395. start + (len/3));
  1396. } else {
  1397. /* Enable store & forward on Tx queue's because
  1398. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1399. */
  1400. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1401. }
  1402. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1403. }
  1404. /* Setup Bus Memory Interface */
  1405. static void skge_qset(struct skge_port *skge, u16 q,
  1406. const struct skge_element *e)
  1407. {
  1408. struct skge_hw *hw = skge->hw;
  1409. u32 watermark = 0x600;
  1410. u64 base = skge->dma + (e->desc - skge->mem);
  1411. /* optimization to reduce window on 32bit/33mhz */
  1412. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1413. watermark /= 2;
  1414. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1415. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1416. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1417. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1418. }
  1419. void skge_free(struct net_device *dev)
  1420. {
  1421. struct skge_port *skge = netdev_priv(dev);
  1422. free(skge->rx_ring.start);
  1423. skge->rx_ring.start = NULL;
  1424. free(skge->tx_ring.start);
  1425. skge->tx_ring.start = NULL;
  1426. free_dma(skge->mem, RING_SIZE);
  1427. skge->mem = NULL;
  1428. skge->dma = 0;
  1429. }
  1430. static int skge_up(struct net_device *dev)
  1431. {
  1432. struct skge_port *skge = netdev_priv(dev);
  1433. struct skge_hw *hw = skge->hw;
  1434. int port = skge->port;
  1435. u32 chunk, ram_addr;
  1436. int err;
  1437. DBG2(PFX "%s: enabling interface\n", dev->name);
  1438. skge->mem = malloc_dma(RING_SIZE, SKGE_RING_ALIGN);
  1439. skge->dma = virt_to_bus(skge->mem);
  1440. if (!skge->mem)
  1441. return -ENOMEM;
  1442. memset(skge->mem, 0, RING_SIZE);
  1443. assert(!(skge->dma & 7));
  1444. /* FIXME: find out whether 64 bit iPXE will be loaded > 4GB */
  1445. if ((u64)skge->dma >> 32 != ((u64) skge->dma + RING_SIZE) >> 32) {
  1446. DBG(PFX "pci_alloc_consistent region crosses 4G boundary\n");
  1447. err = -EINVAL;
  1448. goto err;
  1449. }
  1450. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma, NUM_RX_DESC);
  1451. if (err)
  1452. goto err;
  1453. /* this call relies on e->iob and d->control to be 0
  1454. * This is assured by calling memset() on skge->mem and using zalloc()
  1455. * for the skge_element structures.
  1456. */
  1457. skge_rx_refill(dev);
  1458. err = skge_ring_alloc(&skge->tx_ring, skge->mem + RX_RING_SIZE,
  1459. skge->dma + RX_RING_SIZE, NUM_TX_DESC);
  1460. if (err)
  1461. goto err;
  1462. /* Initialize MAC */
  1463. if (hw->chip_id == CHIP_ID_GENESIS)
  1464. genesis_mac_init(hw, port);
  1465. else
  1466. yukon_mac_init(hw, port);
  1467. /* Configure RAMbuffers - equally between ports and tx/rx */
  1468. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  1469. ram_addr = hw->ram_offset + 2 * chunk * port;
  1470. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1471. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1472. assert(!(skge->tx_ring.to_use != skge->tx_ring.to_clean));
  1473. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1474. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1475. /* Start receiver BMU */
  1476. wmb();
  1477. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1478. skge_led(skge, LED_MODE_ON);
  1479. hw->intr_mask |= portmask[port];
  1480. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1481. return 0;
  1482. err:
  1483. skge_rx_clean(skge);
  1484. skge_free(dev);
  1485. return err;
  1486. }
  1487. /* stop receiver */
  1488. static void skge_rx_stop(struct skge_hw *hw, int port)
  1489. {
  1490. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1491. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1492. RB_RST_SET|RB_DIS_OP_MD);
  1493. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1494. }
  1495. static void skge_down(struct net_device *dev)
  1496. {
  1497. struct skge_port *skge = netdev_priv(dev);
  1498. struct skge_hw *hw = skge->hw;
  1499. int port = skge->port;
  1500. if (skge->mem == NULL)
  1501. return;
  1502. DBG2(PFX "%s: disabling interface\n", dev->name);
  1503. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  1504. skge->use_xm_link_timer = 0;
  1505. netdev_link_down(dev);
  1506. hw->intr_mask &= ~portmask[port];
  1507. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1508. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  1509. if (hw->chip_id == CHIP_ID_GENESIS)
  1510. genesis_stop(skge);
  1511. else
  1512. yukon_stop(skge);
  1513. /* Stop transmitter */
  1514. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1515. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1516. RB_RST_SET|RB_DIS_OP_MD);
  1517. /* Disable Force Sync bit and Enable Alloc bit */
  1518. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1519. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1520. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1521. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1522. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1523. /* Reset PCI FIFO */
  1524. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1525. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1526. /* Reset the RAM Buffer async Tx queue */
  1527. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1528. skge_rx_stop(hw, port);
  1529. if (hw->chip_id == CHIP_ID_GENESIS) {
  1530. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1531. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1532. } else {
  1533. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1534. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1535. }
  1536. skge_led(skge, LED_MODE_OFF);
  1537. skge_tx_clean(dev);
  1538. skge_rx_clean(skge);
  1539. skge_free(dev);
  1540. return;
  1541. }
  1542. static inline int skge_tx_avail(const struct skge_ring *ring)
  1543. {
  1544. mb();
  1545. return ((ring->to_clean > ring->to_use) ? 0 : NUM_TX_DESC)
  1546. + (ring->to_clean - ring->to_use) - 1;
  1547. }
  1548. static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob)
  1549. {
  1550. struct skge_port *skge = netdev_priv(dev);
  1551. struct skge_hw *hw = skge->hw;
  1552. struct skge_element *e;
  1553. struct skge_tx_desc *td;
  1554. u32 control, len;
  1555. u64 map;
  1556. if (skge_tx_avail(&skge->tx_ring) < 1)
  1557. return -EBUSY;
  1558. e = skge->tx_ring.to_use;
  1559. td = e->desc;
  1560. assert(!(td->control & BMU_OWN));
  1561. e->iob = iob;
  1562. len = iob_len(iob);
  1563. map = virt_to_bus(iob->data);
  1564. td->dma_lo = map;
  1565. td->dma_hi = map >> 32;
  1566. control = BMU_CHECK;
  1567. control |= BMU_EOF| BMU_IRQ_EOF;
  1568. /* Make sure all the descriptors written */
  1569. wmb();
  1570. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1571. wmb();
  1572. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1573. DBGIO(PFX "%s: tx queued, slot %td, len %d\n",
  1574. dev->name, e - skge->tx_ring.start, (unsigned int)len);
  1575. skge->tx_ring.to_use = e->next;
  1576. wmb();
  1577. if (skge_tx_avail(&skge->tx_ring) <= 1) {
  1578. DBG(PFX "%s: transmit queue full\n", dev->name);
  1579. }
  1580. return 0;
  1581. }
  1582. /* Free all buffers in transmit ring */
  1583. static void skge_tx_clean(struct net_device *dev)
  1584. {
  1585. struct skge_port *skge = netdev_priv(dev);
  1586. struct skge_element *e;
  1587. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  1588. struct skge_tx_desc *td = e->desc;
  1589. td->control = 0;
  1590. }
  1591. skge->tx_ring.to_clean = e;
  1592. }
  1593. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  1594. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  1595. {
  1596. if (hw->chip_id == CHIP_ID_GENESIS)
  1597. return status >> XMR_FS_LEN_SHIFT;
  1598. else
  1599. return status >> GMR_FS_LEN_SHIFT;
  1600. }
  1601. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  1602. {
  1603. if (hw->chip_id == CHIP_ID_GENESIS)
  1604. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  1605. else
  1606. return (status & GMR_FS_ANY_ERR) ||
  1607. (status & GMR_FS_RX_OK) == 0;
  1608. }
  1609. /* Free all buffers in Tx ring which are no longer owned by device */
  1610. static void skge_tx_done(struct net_device *dev)
  1611. {
  1612. struct skge_port *skge = netdev_priv(dev);
  1613. struct skge_ring *ring = &skge->tx_ring;
  1614. struct skge_element *e;
  1615. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  1616. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  1617. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  1618. if (control & BMU_OWN)
  1619. break;
  1620. netdev_tx_complete(dev, e->iob);
  1621. }
  1622. skge->tx_ring.to_clean = e;
  1623. /* Can run lockless until we need to synchronize to restart queue. */
  1624. mb();
  1625. }
  1626. static void skge_rx_refill(struct net_device *dev)
  1627. {
  1628. struct skge_port *skge = netdev_priv(dev);
  1629. struct skge_ring *ring = &skge->rx_ring;
  1630. struct skge_element *e;
  1631. struct io_buffer *iob;
  1632. struct skge_rx_desc *rd;
  1633. u32 control;
  1634. int i;
  1635. for (i = 0; i < NUM_RX_DESC; i++) {
  1636. e = ring->to_clean;
  1637. rd = e->desc;
  1638. iob = e->iob;
  1639. control = rd->control;
  1640. /* nothing to do here */
  1641. if (iob || (control & BMU_OWN))
  1642. continue;
  1643. DBG2("refilling rx desc %zd: ", (ring->to_clean - ring->start));
  1644. iob = alloc_iob(RX_BUF_SIZE);
  1645. if (iob) {
  1646. skge_rx_setup(skge, e, iob, RX_BUF_SIZE);
  1647. } else {
  1648. DBG("descr %zd: alloc_iob() failed\n",
  1649. (ring->to_clean - ring->start));
  1650. /* We pass the descriptor to the NIC even if the
  1651. * allocation failed. The card will stop as soon as it
  1652. * encounters a descriptor with the OWN bit set to 0,
  1653. * thus never getting to the next descriptor that might
  1654. * contain a valid io_buffer. This would effectively
  1655. * stall the receive.
  1656. */
  1657. skge_rx_setup(skge, e, NULL, 0);
  1658. }
  1659. ring->to_clean = e->next;
  1660. }
  1661. }
  1662. static void skge_rx_done(struct net_device *dev)
  1663. {
  1664. struct skge_port *skge = netdev_priv(dev);
  1665. struct skge_ring *ring = &skge->rx_ring;
  1666. struct skge_rx_desc *rd;
  1667. struct skge_element *e;
  1668. struct io_buffer *iob;
  1669. u32 control;
  1670. u16 len;
  1671. int i;
  1672. e = ring->to_clean;
  1673. for (i = 0; i < NUM_RX_DESC; i++) {
  1674. iob = e->iob;
  1675. rd = e->desc;
  1676. rmb();
  1677. control = rd->control;
  1678. if ((control & BMU_OWN))
  1679. break;
  1680. if (!iob)
  1681. continue;
  1682. len = control & BMU_BBC;
  1683. /* catch RX errors */
  1684. if ((bad_phy_status(skge->hw, rd->status)) ||
  1685. (phy_length(skge->hw, rd->status) != len)) {
  1686. /* report receive errors */
  1687. DBG("rx error\n");
  1688. netdev_rx_err(dev, iob, -EIO);
  1689. } else {
  1690. DBG2("received packet, len %d\n", len);
  1691. iob_put(iob, len);
  1692. netdev_rx(dev, iob);
  1693. }
  1694. /* io_buffer passed to core, make sure we don't reuse it */
  1695. e->iob = NULL;
  1696. e = e->next;
  1697. }
  1698. skge_rx_refill(dev);
  1699. }
  1700. static void skge_poll(struct net_device *dev)
  1701. {
  1702. struct skge_port *skge = netdev_priv(dev);
  1703. struct skge_hw *hw = skge->hw;
  1704. u32 status;
  1705. /* reading this register ACKs interrupts */
  1706. status = skge_read32(hw, B0_SP_ISRC);
  1707. /* Link event? */
  1708. if (status & IS_EXT_REG) {
  1709. skge_phyirq(hw);
  1710. if (skge->use_xm_link_timer)
  1711. xm_link_timer(skge);
  1712. }
  1713. skge_tx_done(dev);
  1714. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  1715. skge_rx_done(dev);
  1716. /* restart receiver */
  1717. wmb();
  1718. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  1719. skge_read32(hw, B0_IMSK);
  1720. return;
  1721. }
  1722. static void skge_phyirq(struct skge_hw *hw)
  1723. {
  1724. int port;
  1725. for (port = 0; port < hw->ports; port++) {
  1726. struct net_device *dev = hw->dev[port];
  1727. struct skge_port *skge = netdev_priv(dev);
  1728. if (hw->chip_id != CHIP_ID_GENESIS)
  1729. yukon_phy_intr(skge);
  1730. else if (hw->phy_type == SK_PHY_BCOM)
  1731. bcom_phy_intr(skge);
  1732. }
  1733. hw->intr_mask |= IS_EXT_REG;
  1734. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1735. skge_read32(hw, B0_IMSK);
  1736. }
  1737. static const struct {
  1738. u8 id;
  1739. const char *name;
  1740. } skge_chips[] = {
  1741. { CHIP_ID_GENESIS, "Genesis" },
  1742. { CHIP_ID_YUKON, "Yukon" },
  1743. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  1744. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  1745. };
  1746. static const char *skge_board_name(const struct skge_hw *hw)
  1747. {
  1748. unsigned int i;
  1749. static char buf[16];
  1750. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  1751. if (skge_chips[i].id == hw->chip_id)
  1752. return skge_chips[i].name;
  1753. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  1754. return buf;
  1755. }
  1756. /*
  1757. * Setup the board data structure, but don't bring up
  1758. * the port(s)
  1759. */
  1760. static int skge_reset(struct skge_hw *hw)
  1761. {
  1762. u32 reg;
  1763. u16 ctst, pci_status;
  1764. u8 t8, mac_cfg, pmd_type;
  1765. int i;
  1766. ctst = skge_read16(hw, B0_CTST);
  1767. /* do a SW reset */
  1768. skge_write8(hw, B0_CTST, CS_RST_SET);
  1769. skge_write8(hw, B0_CTST, CS_RST_CLR);
  1770. /* clear PCI errors, if any */
  1771. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1772. skge_write8(hw, B2_TST_CTRL2, 0);
  1773. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  1774. pci_write_config_word(hw->pdev, PCI_STATUS,
  1775. pci_status | PCI_STATUS_ERROR_BITS);
  1776. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1777. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  1778. /* restore CLK_RUN bits (for Yukon-Lite) */
  1779. skge_write16(hw, B0_CTST,
  1780. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  1781. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  1782. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  1783. pmd_type = skge_read8(hw, B2_PMD_TYP);
  1784. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  1785. switch (hw->chip_id) {
  1786. case CHIP_ID_GENESIS:
  1787. switch (hw->phy_type) {
  1788. case SK_PHY_XMAC:
  1789. hw->phy_addr = PHY_ADDR_XMAC;
  1790. break;
  1791. case SK_PHY_BCOM:
  1792. hw->phy_addr = PHY_ADDR_BCOM;
  1793. break;
  1794. default:
  1795. DBG(PFX "unsupported phy type 0x%x\n",
  1796. hw->phy_type);
  1797. return -EOPNOTSUPP;
  1798. }
  1799. break;
  1800. case CHIP_ID_YUKON:
  1801. case CHIP_ID_YUKON_LITE:
  1802. case CHIP_ID_YUKON_LP:
  1803. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  1804. hw->copper = 1;
  1805. hw->phy_addr = PHY_ADDR_MARV;
  1806. break;
  1807. default:
  1808. DBG(PFX "unsupported chip type 0x%x\n",
  1809. hw->chip_id);
  1810. return -EOPNOTSUPP;
  1811. }
  1812. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  1813. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  1814. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  1815. /* read the adapters RAM size */
  1816. t8 = skge_read8(hw, B2_E_0);
  1817. if (hw->chip_id == CHIP_ID_GENESIS) {
  1818. if (t8 == 3) {
  1819. /* special case: 4 x 64k x 36, offset = 0x80000 */
  1820. hw->ram_size = 0x100000;
  1821. hw->ram_offset = 0x80000;
  1822. } else
  1823. hw->ram_size = t8 * 512;
  1824. }
  1825. else if (t8 == 0)
  1826. hw->ram_size = 0x20000;
  1827. else
  1828. hw->ram_size = t8 * 4096;
  1829. hw->intr_mask = IS_HW_ERR;
  1830. /* Use PHY IRQ for all but fiber based Genesis board */
  1831. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  1832. hw->intr_mask |= IS_EXT_REG;
  1833. if (hw->chip_id == CHIP_ID_GENESIS)
  1834. genesis_init(hw);
  1835. else {
  1836. /* switch power to VCC (WA for VAUX problem) */
  1837. skge_write8(hw, B0_POWER_CTRL,
  1838. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  1839. /* avoid boards with stuck Hardware error bits */
  1840. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  1841. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  1842. DBG(PFX "stuck hardware sensor bit\n");
  1843. hw->intr_mask &= ~IS_HW_ERR;
  1844. }
  1845. /* Clear PHY COMA */
  1846. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1847. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  1848. reg &= ~PCI_PHY_COMA;
  1849. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  1850. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1851. for (i = 0; i < hw->ports; i++) {
  1852. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1853. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1854. }
  1855. }
  1856. /* turn off hardware timer (unused) */
  1857. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  1858. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1859. skge_write8(hw, B0_LED, LED_STAT_ON);
  1860. /* enable the Tx Arbiters */
  1861. for (i = 0; i < hw->ports; i++)
  1862. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  1863. /* Initialize ram interface */
  1864. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  1865. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  1866. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  1867. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  1868. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  1869. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  1870. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  1871. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  1872. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  1873. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  1874. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  1875. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  1876. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  1877. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  1878. /* Set interrupt moderation for Transmit only
  1879. * Receive interrupts avoided by NAPI
  1880. */
  1881. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  1882. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  1883. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  1884. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1885. for (i = 0; i < hw->ports; i++) {
  1886. if (hw->chip_id == CHIP_ID_GENESIS)
  1887. genesis_reset(hw, i);
  1888. else
  1889. yukon_reset(hw, i);
  1890. }
  1891. return 0;
  1892. }
  1893. /* Initialize network device */
  1894. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  1895. int highmem __unused)
  1896. {
  1897. struct skge_port *skge;
  1898. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  1899. if (!dev) {
  1900. DBG(PFX "etherdev alloc failed\n");
  1901. return NULL;
  1902. }
  1903. dev->dev = &hw->pdev->dev;
  1904. skge = netdev_priv(dev);
  1905. skge->netdev = dev;
  1906. skge->hw = hw;
  1907. /* Auto speed and flow control */
  1908. skge->autoneg = AUTONEG_ENABLE;
  1909. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  1910. skge->duplex = -1;
  1911. skge->speed = -1;
  1912. skge->advertising = skge_supported_modes(hw);
  1913. hw->dev[port] = dev;
  1914. skge->port = port;
  1915. /* read the mac address */
  1916. memcpy(dev->hw_addr, (void *) (hw->regs + B2_MAC_1 + port*8), ETH_ALEN);
  1917. return dev;
  1918. }
  1919. static void skge_show_addr(struct net_device *dev)
  1920. {
  1921. DBG2(PFX "%s: addr %s\n",
  1922. dev->name, netdev_addr(dev));
  1923. }
  1924. static int skge_probe(struct pci_device *pdev)
  1925. {
  1926. struct net_device *dev, *dev1;
  1927. struct skge_hw *hw;
  1928. int err, using_dac = 0;
  1929. adjust_pci_device(pdev);
  1930. err = -ENOMEM;
  1931. hw = zalloc(sizeof(*hw));
  1932. if (!hw) {
  1933. DBG(PFX "cannot allocate hardware struct\n");
  1934. goto err_out_free_regions;
  1935. }
  1936. hw->pdev = pdev;
  1937. hw->regs = (unsigned long)ioremap(pci_bar_start(pdev, PCI_BASE_ADDRESS_0),
  1938. SKGE_REG_SIZE);
  1939. if (!hw->regs) {
  1940. DBG(PFX "cannot map device registers\n");
  1941. goto err_out_free_hw;
  1942. }
  1943. err = skge_reset(hw);
  1944. if (err)
  1945. goto err_out_iounmap;
  1946. DBG(PFX " addr 0x%llx irq %d chip %s rev %d\n",
  1947. (unsigned long long)pdev->ioaddr, pdev->irq,
  1948. skge_board_name(hw), hw->chip_rev);
  1949. dev = skge_devinit(hw, 0, using_dac);
  1950. if (!dev)
  1951. goto err_out_led_off;
  1952. netdev_init ( dev, &skge_operations );
  1953. err = register_netdev(dev);
  1954. if (err) {
  1955. DBG(PFX "cannot register net device\n");
  1956. goto err_out_free_netdev;
  1957. }
  1958. skge_show_addr(dev);
  1959. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  1960. if (register_netdev(dev1) == 0)
  1961. skge_show_addr(dev1);
  1962. else {
  1963. /* Failure to register second port need not be fatal */
  1964. DBG(PFX "register of second port failed\n");
  1965. hw->dev[1] = NULL;
  1966. netdev_nullify(dev1);
  1967. netdev_put(dev1);
  1968. }
  1969. }
  1970. pci_set_drvdata(pdev, hw);
  1971. return 0;
  1972. err_out_free_netdev:
  1973. netdev_nullify(dev);
  1974. netdev_put(dev);
  1975. err_out_led_off:
  1976. skge_write16(hw, B0_LED, LED_STAT_OFF);
  1977. err_out_iounmap:
  1978. iounmap((void*)hw->regs);
  1979. err_out_free_hw:
  1980. free(hw);
  1981. err_out_free_regions:
  1982. pci_set_drvdata(pdev, NULL);
  1983. return err;
  1984. }
  1985. static void skge_remove(struct pci_device *pdev)
  1986. {
  1987. struct skge_hw *hw = pci_get_drvdata(pdev);
  1988. struct net_device *dev0, *dev1;
  1989. if (!hw)
  1990. return;
  1991. if ((dev1 = hw->dev[1]))
  1992. unregister_netdev(dev1);
  1993. dev0 = hw->dev[0];
  1994. unregister_netdev(dev0);
  1995. hw->intr_mask = 0;
  1996. skge_write32(hw, B0_IMSK, 0);
  1997. skge_read32(hw, B0_IMSK);
  1998. skge_write16(hw, B0_LED, LED_STAT_OFF);
  1999. skge_write8(hw, B0_CTST, CS_RST_SET);
  2000. if (dev1) {
  2001. netdev_nullify(dev1);
  2002. netdev_put(dev1);
  2003. }
  2004. netdev_nullify(dev0);
  2005. netdev_put(dev0);
  2006. iounmap((void*)hw->regs);
  2007. free(hw);
  2008. pci_set_drvdata(pdev, NULL);
  2009. }
  2010. /*
  2011. * Enable or disable IRQ masking.
  2012. *
  2013. * @v netdev Device to control.
  2014. * @v enable Zero to mask off IRQ, non-zero to enable IRQ.
  2015. *
  2016. * This is a iPXE Network Driver API function.
  2017. */
  2018. static void skge_net_irq ( struct net_device *dev, int enable ) {
  2019. struct skge_port *skge = netdev_priv(dev);
  2020. struct skge_hw *hw = skge->hw;
  2021. if (enable)
  2022. hw->intr_mask |= portmask[skge->port];
  2023. else
  2024. hw->intr_mask &= ~portmask[skge->port];
  2025. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2026. }
  2027. struct pci_driver skge_driver __pci_driver = {
  2028. .ids = skge_id_table,
  2029. .id_count = ( sizeof (skge_id_table) / sizeof (skge_id_table[0]) ),
  2030. .probe = skge_probe,
  2031. .remove = skge_remove
  2032. };