You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ath5k_eeprom.c 47KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Lightly modified for iPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
  7. *
  8. * Permission to use, copy, modify, and distribute this software for any
  9. * purpose with or without fee is hereby granted, provided that the above
  10. * copyright notice and this permission notice appear in all copies.
  11. *
  12. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  13. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  14. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  15. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  16. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  17. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  18. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  19. *
  20. */
  21. FILE_LICENCE ( MIT );
  22. /*************************************\
  23. * EEPROM access functions and helpers *
  24. \*************************************/
  25. #include <unistd.h>
  26. #include <stdlib.h>
  27. #include "ath5k.h"
  28. #include "reg.h"
  29. #include "base.h"
  30. /*
  31. * Read from eeprom
  32. */
  33. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  34. {
  35. u32 status, timeout;
  36. /*
  37. * Initialize EEPROM access
  38. */
  39. if (ah->ah_version == AR5K_AR5210) {
  40. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  41. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  42. } else {
  43. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  44. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  45. AR5K_EEPROM_CMD_READ);
  46. }
  47. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  48. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  49. if (status & AR5K_EEPROM_STAT_RDDONE) {
  50. if (status & AR5K_EEPROM_STAT_RDERR)
  51. return -EIO;
  52. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  53. 0xffff);
  54. return 0;
  55. }
  56. udelay(15);
  57. }
  58. return -ETIMEDOUT;
  59. }
  60. /*
  61. * Translate binary channel representation in EEPROM to frequency
  62. */
  63. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  64. unsigned int mode)
  65. {
  66. u16 val;
  67. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  68. return bin;
  69. if (mode == AR5K_EEPROM_MODE_11A) {
  70. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  71. val = (5 * bin) + 4800;
  72. else
  73. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  74. (bin * 10) + 5100;
  75. } else {
  76. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  77. val = bin + 2300;
  78. else
  79. val = bin + 2400;
  80. }
  81. return val;
  82. }
  83. /*
  84. * Initialize eeprom & capabilities structs
  85. */
  86. static int
  87. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  88. {
  89. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  90. int ret;
  91. u16 val;
  92. /*
  93. * Read values from EEPROM and store them in the capability structure
  94. */
  95. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  97. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  98. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  99. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  100. /* Return if we have an old EEPROM */
  101. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  102. return 0;
  103. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  104. ee_ant_gain);
  105. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  106. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  107. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  108. /* XXX: Don't know which versions include these two */
  109. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  110. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  111. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  112. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  113. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  114. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  115. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  116. }
  117. }
  118. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  119. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  120. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  121. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  122. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  123. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  124. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  125. }
  126. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  127. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  128. ee->ee_is_hb63 = 1;
  129. else
  130. ee->ee_is_hb63 = 0;
  131. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  132. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  133. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? 1 : 0;
  134. return 0;
  135. }
  136. /*
  137. * Read antenna infos from eeprom
  138. */
  139. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  140. unsigned int mode)
  141. {
  142. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  143. u32 o = *offset;
  144. u16 val;
  145. int ret, i = 0;
  146. AR5K_EEPROM_READ(o++, val);
  147. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  148. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  149. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  150. AR5K_EEPROM_READ(o++, val);
  151. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  152. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  153. ee->ee_ant_control[mode][i++] = val & 0x3f;
  154. AR5K_EEPROM_READ(o++, val);
  155. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  156. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  157. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  158. AR5K_EEPROM_READ(o++, val);
  159. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  160. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  161. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  162. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  163. AR5K_EEPROM_READ(o++, val);
  164. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  165. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  166. ee->ee_ant_control[mode][i++] = val & 0x3f;
  167. /* Get antenna modes */
  168. ah->ah_antenna[mode][0] =
  169. (ee->ee_ant_control[mode][0] << 4);
  170. ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
  171. ee->ee_ant_control[mode][1] |
  172. (ee->ee_ant_control[mode][2] << 6) |
  173. (ee->ee_ant_control[mode][3] << 12) |
  174. (ee->ee_ant_control[mode][4] << 18) |
  175. (ee->ee_ant_control[mode][5] << 24);
  176. ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
  177. ee->ee_ant_control[mode][6] |
  178. (ee->ee_ant_control[mode][7] << 6) |
  179. (ee->ee_ant_control[mode][8] << 12) |
  180. (ee->ee_ant_control[mode][9] << 18) |
  181. (ee->ee_ant_control[mode][10] << 24);
  182. /* return new offset */
  183. *offset = o;
  184. return 0;
  185. }
  186. /*
  187. * Read supported modes and some mode-specific calibration data
  188. * from eeprom
  189. */
  190. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  191. unsigned int mode)
  192. {
  193. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  194. u32 o = *offset;
  195. u16 val;
  196. int ret;
  197. ee->ee_n_piers[mode] = 0;
  198. AR5K_EEPROM_READ(o++, val);
  199. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  200. switch(mode) {
  201. case AR5K_EEPROM_MODE_11A:
  202. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  203. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  204. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  205. AR5K_EEPROM_READ(o++, val);
  206. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  207. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  208. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  209. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  210. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  211. ee->ee_db[mode][0] = val & 0x7;
  212. break;
  213. case AR5K_EEPROM_MODE_11G:
  214. case AR5K_EEPROM_MODE_11B:
  215. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  216. ee->ee_db[mode][1] = val & 0x7;
  217. break;
  218. }
  219. AR5K_EEPROM_READ(o++, val);
  220. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  221. ee->ee_thr_62[mode] = val & 0xff;
  222. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  223. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  224. AR5K_EEPROM_READ(o++, val);
  225. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  226. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  227. AR5K_EEPROM_READ(o++, val);
  228. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  229. if ((val & 0xff) & 0x80)
  230. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  231. else
  232. ee->ee_noise_floor_thr[mode] = val & 0xff;
  233. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  234. ee->ee_noise_floor_thr[mode] =
  235. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  236. AR5K_EEPROM_READ(o++, val);
  237. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  238. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  239. ee->ee_xpd[mode] = val & 0x1;
  240. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
  241. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  242. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  243. AR5K_EEPROM_READ(o++, val);
  244. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  245. if (mode == AR5K_EEPROM_MODE_11A)
  246. ee->ee_xr_power[mode] = val & 0x3f;
  247. else {
  248. ee->ee_ob[mode][0] = val & 0x7;
  249. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  250. }
  251. }
  252. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  253. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  254. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  255. } else {
  256. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  257. AR5K_EEPROM_READ(o++, val);
  258. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  259. if (mode == AR5K_EEPROM_MODE_11G) {
  260. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  261. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  262. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  263. }
  264. }
  265. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  266. mode == AR5K_EEPROM_MODE_11A) {
  267. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  268. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  269. }
  270. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  271. goto done;
  272. /* Note: >= v5 have bg freq piers on another location
  273. * so these freq piers are ignored for >= v5 (should be 0xff
  274. * anyway) */
  275. switch(mode) {
  276. case AR5K_EEPROM_MODE_11A:
  277. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  278. break;
  279. AR5K_EEPROM_READ(o++, val);
  280. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  281. break;
  282. case AR5K_EEPROM_MODE_11B:
  283. AR5K_EEPROM_READ(o++, val);
  284. ee->ee_pwr_cal_b[0].freq =
  285. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  286. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  287. ee->ee_n_piers[mode]++;
  288. ee->ee_pwr_cal_b[1].freq =
  289. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  290. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  291. ee->ee_n_piers[mode]++;
  292. AR5K_EEPROM_READ(o++, val);
  293. ee->ee_pwr_cal_b[2].freq =
  294. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  295. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  296. ee->ee_n_piers[mode]++;
  297. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  298. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  299. break;
  300. case AR5K_EEPROM_MODE_11G:
  301. AR5K_EEPROM_READ(o++, val);
  302. ee->ee_pwr_cal_g[0].freq =
  303. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  304. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  305. ee->ee_n_piers[mode]++;
  306. ee->ee_pwr_cal_g[1].freq =
  307. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  308. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  309. ee->ee_n_piers[mode]++;
  310. AR5K_EEPROM_READ(o++, val);
  311. ee->ee_turbo_max_power[mode] = val & 0x7f;
  312. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  313. AR5K_EEPROM_READ(o++, val);
  314. ee->ee_pwr_cal_g[2].freq =
  315. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  316. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  317. ee->ee_n_piers[mode]++;
  318. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  319. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  320. AR5K_EEPROM_READ(o++, val);
  321. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  322. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  323. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  324. AR5K_EEPROM_READ(o++, val);
  325. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  326. }
  327. break;
  328. }
  329. done:
  330. /* return new offset */
  331. *offset = o;
  332. return 0;
  333. }
  334. /*
  335. * Read turbo mode information on newer EEPROM versions
  336. */
  337. static int
  338. ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
  339. u32 *offset, unsigned int mode)
  340. {
  341. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  342. u32 o = *offset;
  343. u16 val;
  344. int ret;
  345. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  346. return 0;
  347. switch (mode){
  348. case AR5K_EEPROM_MODE_11A:
  349. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  350. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  351. AR5K_EEPROM_READ(o++, val);
  352. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  353. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  354. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  355. AR5K_EEPROM_READ(o++, val);
  356. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  357. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  358. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  359. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  360. break;
  361. case AR5K_EEPROM_MODE_11G:
  362. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  363. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  364. AR5K_EEPROM_READ(o++, val);
  365. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  366. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  367. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  368. AR5K_EEPROM_READ(o++, val);
  369. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  370. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  371. break;
  372. }
  373. /* return new offset */
  374. *offset = o;
  375. return 0;
  376. }
  377. /* Read mode-specific data (except power calibration data) */
  378. static int
  379. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  380. {
  381. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  382. u32 mode_offset[3];
  383. unsigned int mode;
  384. u32 offset;
  385. int ret;
  386. /*
  387. * Get values for all modes
  388. */
  389. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  390. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  391. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  392. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  393. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  394. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  395. offset = mode_offset[mode];
  396. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  397. if (ret)
  398. return ret;
  399. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  400. if (ret)
  401. return ret;
  402. ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
  403. if (ret)
  404. return ret;
  405. }
  406. /* override for older eeprom versions for better performance */
  407. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  408. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  409. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  410. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  411. }
  412. return 0;
  413. }
  414. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  415. * frequency mask) */
  416. static inline int
  417. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  418. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  419. {
  420. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  421. int o = *offset;
  422. int i = 0;
  423. u8 freq1, freq2;
  424. int ret;
  425. u16 val;
  426. ee->ee_n_piers[mode] = 0;
  427. while(i < max) {
  428. AR5K_EEPROM_READ(o++, val);
  429. freq1 = val & 0xff;
  430. if (!freq1)
  431. break;
  432. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  433. freq1, mode);
  434. ee->ee_n_piers[mode]++;
  435. freq2 = (val >> 8) & 0xff;
  436. if (!freq2)
  437. break;
  438. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  439. freq2, mode);
  440. ee->ee_n_piers[mode]++;
  441. }
  442. /* return new offset */
  443. *offset = o;
  444. return 0;
  445. }
  446. /* Read frequency piers for 802.11a */
  447. static int
  448. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  449. {
  450. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  451. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  452. int i, ret;
  453. u16 val;
  454. u8 mask;
  455. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  456. ath5k_eeprom_read_freq_list(ah, &offset,
  457. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  458. AR5K_EEPROM_MODE_11A);
  459. } else {
  460. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  461. AR5K_EEPROM_READ(offset++, val);
  462. pcal[0].freq = (val >> 9) & mask;
  463. pcal[1].freq = (val >> 2) & mask;
  464. pcal[2].freq = (val << 5) & mask;
  465. AR5K_EEPROM_READ(offset++, val);
  466. pcal[2].freq |= (val >> 11) & 0x1f;
  467. pcal[3].freq = (val >> 4) & mask;
  468. pcal[4].freq = (val << 3) & mask;
  469. AR5K_EEPROM_READ(offset++, val);
  470. pcal[4].freq |= (val >> 13) & 0x7;
  471. pcal[5].freq = (val >> 6) & mask;
  472. pcal[6].freq = (val << 1) & mask;
  473. AR5K_EEPROM_READ(offset++, val);
  474. pcal[6].freq |= (val >> 15) & 0x1;
  475. pcal[7].freq = (val >> 8) & mask;
  476. pcal[8].freq = (val >> 1) & mask;
  477. pcal[9].freq = (val << 6) & mask;
  478. AR5K_EEPROM_READ(offset++, val);
  479. pcal[9].freq |= (val >> 10) & 0x3f;
  480. /* Fixed number of piers */
  481. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  482. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  483. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  484. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  485. }
  486. }
  487. return 0;
  488. }
  489. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  490. static inline int
  491. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  492. {
  493. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  494. struct ath5k_chan_pcal_info *pcal;
  495. switch(mode) {
  496. case AR5K_EEPROM_MODE_11B:
  497. pcal = ee->ee_pwr_cal_b;
  498. break;
  499. case AR5K_EEPROM_MODE_11G:
  500. pcal = ee->ee_pwr_cal_g;
  501. break;
  502. default:
  503. return -EINVAL;
  504. }
  505. ath5k_eeprom_read_freq_list(ah, &offset,
  506. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  507. mode);
  508. return 0;
  509. }
  510. /*
  511. * Read power calibration for RF5111 chips
  512. *
  513. * For RF5111 we have an XPD -eXternal Power Detector- curve
  514. * for each calibrated channel. Each curve has 0,5dB Power steps
  515. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  516. * exponential function. To recreate the curve we read 11 points
  517. * here and interpolate later.
  518. */
  519. /* Used to match PCDAC steps with power values on RF5111 chips
  520. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  521. * steps that match with the power values we read from eeprom. On
  522. * older eeprom versions (< 3.2) these steps are equaly spaced at
  523. * 10% of the pcdac curve -until the curve reaches it's maximum-
  524. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  525. * these 11 steps are spaced in a different way. This function returns
  526. * the pcdac steps based on eeprom version and curve min/max so that we
  527. * can have pcdac/pwr points.
  528. */
  529. static inline void
  530. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  531. {
  532. static const u16 intercepts3[] =
  533. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  534. static const u16 intercepts3_2[] =
  535. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  536. const u16 *ip;
  537. unsigned i;
  538. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  539. ip = intercepts3_2;
  540. else
  541. ip = intercepts3;
  542. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  543. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  544. }
  545. /* Convert RF5111 specific data to generic raw data
  546. * used by interpolation code */
  547. static int
  548. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  549. struct ath5k_chan_pcal_info *chinfo)
  550. {
  551. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  552. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  553. struct ath5k_pdgain_info *pd;
  554. u8 pier, point, idx;
  555. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  556. /* Fill raw data for each calibration pier */
  557. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  558. pcinfo = &chinfo[pier].rf5111_info;
  559. /* Allocate pd_curves for this cal pier */
  560. chinfo[pier].pd_curves =
  561. calloc(AR5K_EEPROM_N_PD_CURVES,
  562. sizeof(struct ath5k_pdgain_info));
  563. if (!chinfo[pier].pd_curves)
  564. return -ENOMEM;
  565. /* Only one curve for RF5111
  566. * find out which one and place
  567. * in in pd_curves.
  568. * Note: ee_x_gain is reversed here */
  569. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  570. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  571. pdgain_idx[0] = idx;
  572. break;
  573. }
  574. }
  575. ee->ee_pd_gains[mode] = 1;
  576. pd = &chinfo[pier].pd_curves[idx];
  577. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  578. /* Allocate pd points for this curve */
  579. pd->pd_step = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(u8));
  580. if (!pd->pd_step)
  581. return -ENOMEM;
  582. pd->pd_pwr = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(s16));
  583. if (!pd->pd_pwr)
  584. return -ENOMEM;
  585. /* Fill raw dataset
  586. * (convert power to 0.25dB units
  587. * for RF5112 combatibility) */
  588. for (point = 0; point < pd->pd_points; point++) {
  589. /* Absolute values */
  590. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  591. /* Already sorted */
  592. pd->pd_step[point] = pcinfo->pcdac[point];
  593. }
  594. /* Set min/max pwr */
  595. chinfo[pier].min_pwr = pd->pd_pwr[0];
  596. chinfo[pier].max_pwr = pd->pd_pwr[10];
  597. }
  598. return 0;
  599. }
  600. /* Parse EEPROM data */
  601. static int
  602. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  603. {
  604. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  605. struct ath5k_chan_pcal_info *pcal;
  606. int offset, ret;
  607. int i;
  608. u16 val;
  609. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  610. switch(mode) {
  611. case AR5K_EEPROM_MODE_11A:
  612. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  613. return 0;
  614. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  615. offset + AR5K_EEPROM_GROUP1_OFFSET);
  616. if (ret < 0)
  617. return ret;
  618. offset += AR5K_EEPROM_GROUP2_OFFSET;
  619. pcal = ee->ee_pwr_cal_a;
  620. break;
  621. case AR5K_EEPROM_MODE_11B:
  622. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  623. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  624. return 0;
  625. pcal = ee->ee_pwr_cal_b;
  626. offset += AR5K_EEPROM_GROUP3_OFFSET;
  627. /* fixed piers */
  628. pcal[0].freq = 2412;
  629. pcal[1].freq = 2447;
  630. pcal[2].freq = 2484;
  631. ee->ee_n_piers[mode] = 3;
  632. break;
  633. case AR5K_EEPROM_MODE_11G:
  634. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  635. return 0;
  636. pcal = ee->ee_pwr_cal_g;
  637. offset += AR5K_EEPROM_GROUP4_OFFSET;
  638. /* fixed piers */
  639. pcal[0].freq = 2312;
  640. pcal[1].freq = 2412;
  641. pcal[2].freq = 2484;
  642. ee->ee_n_piers[mode] = 3;
  643. break;
  644. default:
  645. return -EINVAL;
  646. }
  647. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  648. struct ath5k_chan_pcal_info_rf5111 *cdata =
  649. &pcal[i].rf5111_info;
  650. AR5K_EEPROM_READ(offset++, val);
  651. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  652. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  653. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  654. AR5K_EEPROM_READ(offset++, val);
  655. cdata->pwr[0] |= ((val >> 14) & 0x3);
  656. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  657. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  658. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  659. AR5K_EEPROM_READ(offset++, val);
  660. cdata->pwr[3] |= ((val >> 12) & 0xf);
  661. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  662. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  663. AR5K_EEPROM_READ(offset++, val);
  664. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  665. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  666. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  667. AR5K_EEPROM_READ(offset++, val);
  668. cdata->pwr[8] |= ((val >> 14) & 0x3);
  669. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  670. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  671. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  672. cdata->pcdac_max, cdata->pcdac);
  673. }
  674. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  675. }
  676. /*
  677. * Read power calibration for RF5112 chips
  678. *
  679. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  680. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  681. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  682. * power steps on x axis and PCDAC steps on y axis and looks like a
  683. * linear function. To recreate the curve and pass the power values
  684. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  685. * and 3 points for xpd 3 (higher gain -> lower power) here and
  686. * interpolate later.
  687. *
  688. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  689. */
  690. /* Convert RF5112 specific data to generic raw data
  691. * used by interpolation code */
  692. static int
  693. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  694. struct ath5k_chan_pcal_info *chinfo)
  695. {
  696. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  697. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  698. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  699. unsigned int pier, pdg, point;
  700. /* Fill raw data for each calibration pier */
  701. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  702. pcinfo = &chinfo[pier].rf5112_info;
  703. /* Allocate pd_curves for this cal pier */
  704. chinfo[pier].pd_curves =
  705. calloc(AR5K_EEPROM_N_PD_CURVES,
  706. sizeof(struct ath5k_pdgain_info));
  707. if (!chinfo[pier].pd_curves)
  708. return -ENOMEM;
  709. /* Fill pd_curves */
  710. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  711. u8 idx = pdgain_idx[pdg];
  712. struct ath5k_pdgain_info *pd =
  713. &chinfo[pier].pd_curves[idx];
  714. /* Lowest gain curve (max power) */
  715. if (pdg == 0) {
  716. /* One more point for better accuracy */
  717. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  718. /* Allocate pd points for this curve */
  719. pd->pd_step = calloc(pd->pd_points, sizeof(u8));
  720. if (!pd->pd_step)
  721. return -ENOMEM;
  722. pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
  723. if (!pd->pd_pwr)
  724. return -ENOMEM;
  725. /* Fill raw dataset
  726. * (all power levels are in 0.25dB units) */
  727. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  728. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  729. for (point = 1; point < pd->pd_points;
  730. point++) {
  731. /* Absolute values */
  732. pd->pd_pwr[point] =
  733. pcinfo->pwr_x0[point];
  734. /* Deltas */
  735. pd->pd_step[point] =
  736. pd->pd_step[point - 1] +
  737. pcinfo->pcdac_x0[point];
  738. }
  739. /* Set min power for this frequency */
  740. chinfo[pier].min_pwr = pd->pd_pwr[0];
  741. /* Highest gain curve (min power) */
  742. } else if (pdg == 1) {
  743. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  744. /* Allocate pd points for this curve */
  745. pd->pd_step = calloc(pd->pd_points, sizeof(u8));
  746. if (!pd->pd_step)
  747. return -ENOMEM;
  748. pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
  749. if (!pd->pd_pwr)
  750. return -ENOMEM;
  751. /* Fill raw dataset
  752. * (all power levels are in 0.25dB units) */
  753. for (point = 0; point < pd->pd_points;
  754. point++) {
  755. /* Absolute values */
  756. pd->pd_pwr[point] =
  757. pcinfo->pwr_x3[point];
  758. /* Fixed points */
  759. pd->pd_step[point] =
  760. pcinfo->pcdac_x3[point];
  761. }
  762. /* Since we have a higher gain curve
  763. * override min power */
  764. chinfo[pier].min_pwr = pd->pd_pwr[0];
  765. }
  766. }
  767. }
  768. return 0;
  769. }
  770. /* Parse EEPROM data */
  771. static int
  772. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  773. {
  774. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  775. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  776. struct ath5k_chan_pcal_info *gen_chan_info;
  777. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  778. u32 offset;
  779. u8 i, c;
  780. u16 val;
  781. int ret;
  782. u8 pd_gains = 0;
  783. /* Count how many curves we have and
  784. * identify them (which one of the 4
  785. * available curves we have on each count).
  786. * Curves are stored from lower (x0) to
  787. * higher (x3) gain */
  788. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  789. /* ee_x_gain[mode] is x gain mask */
  790. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  791. pdgain_idx[pd_gains++] = i;
  792. }
  793. ee->ee_pd_gains[mode] = pd_gains;
  794. if (pd_gains == 0 || pd_gains > 2)
  795. return -EINVAL;
  796. switch (mode) {
  797. case AR5K_EEPROM_MODE_11A:
  798. /*
  799. * Read 5GHz EEPROM channels
  800. */
  801. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  802. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  803. offset += AR5K_EEPROM_GROUP2_OFFSET;
  804. gen_chan_info = ee->ee_pwr_cal_a;
  805. break;
  806. case AR5K_EEPROM_MODE_11B:
  807. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  808. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  809. offset += AR5K_EEPROM_GROUP3_OFFSET;
  810. /* NB: frequency piers parsed during mode init */
  811. gen_chan_info = ee->ee_pwr_cal_b;
  812. break;
  813. case AR5K_EEPROM_MODE_11G:
  814. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  815. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  816. offset += AR5K_EEPROM_GROUP4_OFFSET;
  817. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  818. offset += AR5K_EEPROM_GROUP2_OFFSET;
  819. /* NB: frequency piers parsed during mode init */
  820. gen_chan_info = ee->ee_pwr_cal_g;
  821. break;
  822. default:
  823. return -EINVAL;
  824. }
  825. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  826. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  827. /* Power values in quarter dB
  828. * for the lower xpd gain curve
  829. * (0 dBm -> higher output power) */
  830. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  831. AR5K_EEPROM_READ(offset++, val);
  832. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  833. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  834. }
  835. /* PCDAC steps
  836. * corresponding to the above power
  837. * measurements */
  838. AR5K_EEPROM_READ(offset++, val);
  839. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  840. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  841. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  842. /* Power values in quarter dB
  843. * for the higher xpd gain curve
  844. * (18 dBm -> lower output power) */
  845. AR5K_EEPROM_READ(offset++, val);
  846. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  847. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  848. AR5K_EEPROM_READ(offset++, val);
  849. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  850. /* PCDAC steps
  851. * corresponding to the above power
  852. * measurements (fixed) */
  853. chan_pcal_info->pcdac_x3[0] = 20;
  854. chan_pcal_info->pcdac_x3[1] = 35;
  855. chan_pcal_info->pcdac_x3[2] = 63;
  856. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  857. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  858. /* Last xpd0 power level is also channel maximum */
  859. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  860. } else {
  861. chan_pcal_info->pcdac_x0[0] = 1;
  862. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  863. }
  864. }
  865. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  866. }
  867. /*
  868. * Read power calibration for RF2413 chips
  869. *
  870. * For RF2413 we have a Power to PDDAC table (Power Detector)
  871. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  872. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  873. * axis and looks like an exponential function like the RF5111 curve.
  874. *
  875. * To recreate the curves we read here the points and interpolate
  876. * later. Note that in most cases only 2 (higher and lower) curves are
  877. * used (like RF5112) but vendors have the oportunity to include all
  878. * 4 curves on eeprom. The final curve (higher power) has an extra
  879. * point for better accuracy like RF5112.
  880. */
  881. /* For RF2413 power calibration data doesn't start on a fixed location and
  882. * if a mode is not supported, it's section is missing -not zeroed-.
  883. * So we need to calculate the starting offset for each section by using
  884. * these two functions */
  885. /* Return the size of each section based on the mode and the number of pd
  886. * gains available (maximum 4). */
  887. static inline unsigned int
  888. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  889. {
  890. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  891. unsigned int sz;
  892. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  893. sz *= ee->ee_n_piers[mode];
  894. return sz;
  895. }
  896. /* Return the starting offset for a section based on the modes supported
  897. * and each section's size. */
  898. static unsigned int
  899. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  900. {
  901. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  902. switch(mode) {
  903. case AR5K_EEPROM_MODE_11G:
  904. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  905. offset += ath5k_pdgains_size_2413(ee,
  906. AR5K_EEPROM_MODE_11B) +
  907. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  908. /* fall through */
  909. case AR5K_EEPROM_MODE_11B:
  910. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  911. offset += ath5k_pdgains_size_2413(ee,
  912. AR5K_EEPROM_MODE_11A) +
  913. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  914. /* fall through */
  915. case AR5K_EEPROM_MODE_11A:
  916. break;
  917. default:
  918. break;
  919. }
  920. return offset;
  921. }
  922. /* Convert RF2413 specific data to generic raw data
  923. * used by interpolation code */
  924. static int
  925. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  926. struct ath5k_chan_pcal_info *chinfo)
  927. {
  928. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  929. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  930. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  931. unsigned int pier, point;
  932. int pdg;
  933. /* Fill raw data for each calibration pier */
  934. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  935. pcinfo = &chinfo[pier].rf2413_info;
  936. /* Allocate pd_curves for this cal pier */
  937. chinfo[pier].pd_curves =
  938. calloc(AR5K_EEPROM_N_PD_CURVES,
  939. sizeof(struct ath5k_pdgain_info));
  940. if (!chinfo[pier].pd_curves)
  941. return -ENOMEM;
  942. /* Fill pd_curves */
  943. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  944. u8 idx = pdgain_idx[pdg];
  945. struct ath5k_pdgain_info *pd =
  946. &chinfo[pier].pd_curves[idx];
  947. /* One more point for the highest power
  948. * curve (lowest gain) */
  949. if (pdg == ee->ee_pd_gains[mode] - 1)
  950. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  951. else
  952. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  953. /* Allocate pd points for this curve */
  954. pd->pd_step = calloc(pd->pd_points, sizeof(u8));
  955. if (!pd->pd_step)
  956. return -ENOMEM;
  957. pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
  958. if (!pd->pd_pwr)
  959. return -ENOMEM;
  960. /* Fill raw dataset
  961. * convert all pwr levels to
  962. * quarter dB for RF5112 combatibility */
  963. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  964. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  965. for (point = 1; point < pd->pd_points; point++) {
  966. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  967. 2 * pcinfo->pwr[pdg][point - 1];
  968. pd->pd_step[point] = pd->pd_step[point - 1] +
  969. pcinfo->pddac[pdg][point - 1];
  970. }
  971. /* Highest gain curve -> min power */
  972. if (pdg == 0)
  973. chinfo[pier].min_pwr = pd->pd_pwr[0];
  974. /* Lowest gain curve -> max power */
  975. if (pdg == ee->ee_pd_gains[mode] - 1)
  976. chinfo[pier].max_pwr =
  977. pd->pd_pwr[pd->pd_points - 1];
  978. }
  979. }
  980. return 0;
  981. }
  982. /* Parse EEPROM data */
  983. static int
  984. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  985. {
  986. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  987. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  988. struct ath5k_chan_pcal_info *chinfo;
  989. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  990. u32 offset;
  991. int idx, i, ret;
  992. u16 val;
  993. u8 pd_gains = 0;
  994. /* Count how many curves we have and
  995. * identify them (which one of the 4
  996. * available curves we have on each count).
  997. * Curves are stored from higher to
  998. * lower gain so we go backwards */
  999. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1000. /* ee_x_gain[mode] is x gain mask */
  1001. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1002. pdgain_idx[pd_gains++] = idx;
  1003. }
  1004. ee->ee_pd_gains[mode] = pd_gains;
  1005. if (pd_gains == 0)
  1006. return -EINVAL;
  1007. offset = ath5k_cal_data_offset_2413(ee, mode);
  1008. switch (mode) {
  1009. case AR5K_EEPROM_MODE_11A:
  1010. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1011. return 0;
  1012. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1013. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1014. chinfo = ee->ee_pwr_cal_a;
  1015. break;
  1016. case AR5K_EEPROM_MODE_11B:
  1017. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1018. return 0;
  1019. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1020. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1021. chinfo = ee->ee_pwr_cal_b;
  1022. break;
  1023. case AR5K_EEPROM_MODE_11G:
  1024. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1025. return 0;
  1026. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1027. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1028. chinfo = ee->ee_pwr_cal_g;
  1029. break;
  1030. default:
  1031. return -EINVAL;
  1032. }
  1033. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1034. pcinfo = &chinfo[i].rf2413_info;
  1035. /*
  1036. * Read pwr_i, pddac_i and the first
  1037. * 2 pd points (pwr, pddac)
  1038. */
  1039. AR5K_EEPROM_READ(offset++, val);
  1040. pcinfo->pwr_i[0] = val & 0x1f;
  1041. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1042. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1043. AR5K_EEPROM_READ(offset++, val);
  1044. pcinfo->pddac[0][0] = val & 0x3f;
  1045. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1046. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1047. AR5K_EEPROM_READ(offset++, val);
  1048. pcinfo->pwr[0][2] = val & 0xf;
  1049. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1050. pcinfo->pwr[0][3] = 0;
  1051. pcinfo->pddac[0][3] = 0;
  1052. if (pd_gains > 1) {
  1053. /*
  1054. * Pd gain 0 is not the last pd gain
  1055. * so it only has 2 pd points.
  1056. * Continue wih pd gain 1.
  1057. */
  1058. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1059. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1060. AR5K_EEPROM_READ(offset++, val);
  1061. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1062. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1063. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1064. AR5K_EEPROM_READ(offset++, val);
  1065. pcinfo->pwr[1][1] = val & 0xf;
  1066. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1067. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1068. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1069. AR5K_EEPROM_READ(offset++, val);
  1070. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1071. pcinfo->pwr[1][3] = 0;
  1072. pcinfo->pddac[1][3] = 0;
  1073. } else if (pd_gains == 1) {
  1074. /*
  1075. * Pd gain 0 is the last one so
  1076. * read the extra point.
  1077. */
  1078. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1079. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1080. AR5K_EEPROM_READ(offset++, val);
  1081. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1082. }
  1083. /*
  1084. * Proceed with the other pd_gains
  1085. * as above.
  1086. */
  1087. if (pd_gains > 2) {
  1088. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1089. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1090. AR5K_EEPROM_READ(offset++, val);
  1091. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1092. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1093. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1094. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1095. AR5K_EEPROM_READ(offset++, val);
  1096. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1097. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1098. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1099. pcinfo->pwr[2][3] = 0;
  1100. pcinfo->pddac[2][3] = 0;
  1101. } else if (pd_gains == 2) {
  1102. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1103. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1104. }
  1105. if (pd_gains > 3) {
  1106. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1107. AR5K_EEPROM_READ(offset++, val);
  1108. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1109. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1110. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1111. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1112. AR5K_EEPROM_READ(offset++, val);
  1113. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1114. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1115. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1116. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1117. AR5K_EEPROM_READ(offset++, val);
  1118. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1119. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1120. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1121. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1122. AR5K_EEPROM_READ(offset++, val);
  1123. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1124. } else if (pd_gains == 3) {
  1125. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1126. AR5K_EEPROM_READ(offset++, val);
  1127. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1128. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1129. }
  1130. }
  1131. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1132. }
  1133. /*
  1134. * Read per rate target power (this is the maximum tx power
  1135. * supported by the card). This info is used when setting
  1136. * tx power, no matter the channel.
  1137. *
  1138. * This also works for v5 EEPROMs.
  1139. */
  1140. static int
  1141. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1142. {
  1143. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1144. struct ath5k_rate_pcal_info *rate_pcal_info;
  1145. u8 *rate_target_pwr_num;
  1146. u32 offset;
  1147. u16 val;
  1148. int ret, i;
  1149. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1150. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1151. switch (mode) {
  1152. case AR5K_EEPROM_MODE_11A:
  1153. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1154. rate_pcal_info = ee->ee_rate_tpwr_a;
  1155. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1156. break;
  1157. case AR5K_EEPROM_MODE_11B:
  1158. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1159. rate_pcal_info = ee->ee_rate_tpwr_b;
  1160. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1161. break;
  1162. case AR5K_EEPROM_MODE_11G:
  1163. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1164. rate_pcal_info = ee->ee_rate_tpwr_g;
  1165. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1166. break;
  1167. default:
  1168. return -EINVAL;
  1169. }
  1170. /* Different freq mask for older eeproms (<= v3.2) */
  1171. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1172. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1173. AR5K_EEPROM_READ(offset++, val);
  1174. rate_pcal_info[i].freq =
  1175. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1176. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1177. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1178. AR5K_EEPROM_READ(offset++, val);
  1179. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1180. val == 0) {
  1181. (*rate_target_pwr_num) = i;
  1182. break;
  1183. }
  1184. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1185. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1186. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1187. }
  1188. } else {
  1189. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1190. AR5K_EEPROM_READ(offset++, val);
  1191. rate_pcal_info[i].freq =
  1192. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1193. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1194. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1195. AR5K_EEPROM_READ(offset++, val);
  1196. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1197. val == 0) {
  1198. (*rate_target_pwr_num) = i;
  1199. break;
  1200. }
  1201. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1202. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1203. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1204. }
  1205. }
  1206. return 0;
  1207. }
  1208. /*
  1209. * Read per channel calibration info from EEPROM
  1210. *
  1211. * This info is used to calibrate the baseband power table. Imagine
  1212. * that for each channel there is a power curve that's hw specific
  1213. * (depends on amplifier etc) and we try to "correct" this curve using
  1214. * offests we pass on to phy chip (baseband -> before amplifier) so that
  1215. * it can use accurate power values when setting tx power (takes amplifier's
  1216. * performance on each channel into account).
  1217. *
  1218. * EEPROM provides us with the offsets for some pre-calibrated channels
  1219. * and we have to interpolate to create the full table for these channels and
  1220. * also the table for any channel.
  1221. */
  1222. static int
  1223. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1224. {
  1225. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1226. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1227. int mode;
  1228. int err;
  1229. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1230. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1231. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1232. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1233. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1234. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1235. else
  1236. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1237. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1238. mode++) {
  1239. err = read_pcal(ah, mode);
  1240. if (err)
  1241. return err;
  1242. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1243. if (err < 0)
  1244. return err;
  1245. }
  1246. return 0;
  1247. }
  1248. static int
  1249. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1250. {
  1251. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1252. struct ath5k_chan_pcal_info *chinfo;
  1253. u8 pier, pdg;
  1254. switch (mode) {
  1255. case AR5K_EEPROM_MODE_11A:
  1256. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1257. return 0;
  1258. chinfo = ee->ee_pwr_cal_a;
  1259. break;
  1260. case AR5K_EEPROM_MODE_11B:
  1261. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1262. return 0;
  1263. chinfo = ee->ee_pwr_cal_b;
  1264. break;
  1265. case AR5K_EEPROM_MODE_11G:
  1266. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1267. return 0;
  1268. chinfo = ee->ee_pwr_cal_g;
  1269. break;
  1270. default:
  1271. return -EINVAL;
  1272. }
  1273. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1274. if (!chinfo[pier].pd_curves)
  1275. continue;
  1276. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1277. struct ath5k_pdgain_info *pd =
  1278. &chinfo[pier].pd_curves[pdg];
  1279. if (pd != NULL) {
  1280. free(pd->pd_step);
  1281. free(pd->pd_pwr);
  1282. }
  1283. }
  1284. free(chinfo[pier].pd_curves);
  1285. }
  1286. return 0;
  1287. }
  1288. void
  1289. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1290. {
  1291. u8 mode;
  1292. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1293. ath5k_eeprom_free_pcal_info(ah, mode);
  1294. }
  1295. /* Read conformance test limits used for regulatory control */
  1296. static int
  1297. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1298. {
  1299. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1300. struct ath5k_edge_power *rep;
  1301. unsigned int fmask, pmask;
  1302. unsigned int ctl_mode;
  1303. int ret, i, j;
  1304. u32 offset;
  1305. u16 val;
  1306. pmask = AR5K_EEPROM_POWER_M;
  1307. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1308. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1309. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1310. for (i = 0; i < ee->ee_ctls; i += 2) {
  1311. AR5K_EEPROM_READ(offset++, val);
  1312. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1313. ee->ee_ctl[i + 1] = val & 0xff;
  1314. }
  1315. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1316. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1317. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1318. AR5K_EEPROM_GROUP5_OFFSET;
  1319. else
  1320. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1321. rep = ee->ee_ctl_pwr;
  1322. for(i = 0; i < ee->ee_ctls; i++) {
  1323. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1324. case AR5K_CTL_11A:
  1325. case AR5K_CTL_TURBO:
  1326. ctl_mode = AR5K_EEPROM_MODE_11A;
  1327. break;
  1328. default:
  1329. ctl_mode = AR5K_EEPROM_MODE_11G;
  1330. break;
  1331. }
  1332. if (ee->ee_ctl[i] == 0) {
  1333. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1334. offset += 8;
  1335. else
  1336. offset += 7;
  1337. rep += AR5K_EEPROM_N_EDGES;
  1338. continue;
  1339. }
  1340. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1341. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1342. AR5K_EEPROM_READ(offset++, val);
  1343. rep[j].freq = (val >> 8) & fmask;
  1344. rep[j + 1].freq = val & fmask;
  1345. }
  1346. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1347. AR5K_EEPROM_READ(offset++, val);
  1348. rep[j].edge = (val >> 8) & pmask;
  1349. rep[j].flag = (val >> 14) & 1;
  1350. rep[j + 1].edge = val & pmask;
  1351. rep[j + 1].flag = (val >> 6) & 1;
  1352. }
  1353. } else {
  1354. AR5K_EEPROM_READ(offset++, val);
  1355. rep[0].freq = (val >> 9) & fmask;
  1356. rep[1].freq = (val >> 2) & fmask;
  1357. rep[2].freq = (val << 5) & fmask;
  1358. AR5K_EEPROM_READ(offset++, val);
  1359. rep[2].freq |= (val >> 11) & 0x1f;
  1360. rep[3].freq = (val >> 4) & fmask;
  1361. rep[4].freq = (val << 3) & fmask;
  1362. AR5K_EEPROM_READ(offset++, val);
  1363. rep[4].freq |= (val >> 13) & 0x7;
  1364. rep[5].freq = (val >> 6) & fmask;
  1365. rep[6].freq = (val << 1) & fmask;
  1366. AR5K_EEPROM_READ(offset++, val);
  1367. rep[6].freq |= (val >> 15) & 0x1;
  1368. rep[7].freq = (val >> 8) & fmask;
  1369. rep[0].edge = (val >> 2) & pmask;
  1370. rep[1].edge = (val << 4) & pmask;
  1371. AR5K_EEPROM_READ(offset++, val);
  1372. rep[1].edge |= (val >> 12) & 0xf;
  1373. rep[2].edge = (val >> 6) & pmask;
  1374. rep[3].edge = val & pmask;
  1375. AR5K_EEPROM_READ(offset++, val);
  1376. rep[4].edge = (val >> 10) & pmask;
  1377. rep[5].edge = (val >> 4) & pmask;
  1378. rep[6].edge = (val << 2) & pmask;
  1379. AR5K_EEPROM_READ(offset++, val);
  1380. rep[6].edge |= (val >> 14) & 0x3;
  1381. rep[7].edge = (val >> 8) & pmask;
  1382. }
  1383. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1384. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1385. rep[j].freq, ctl_mode);
  1386. }
  1387. rep += AR5K_EEPROM_N_EDGES;
  1388. }
  1389. return 0;
  1390. }
  1391. /*
  1392. * Initialize eeprom power tables
  1393. */
  1394. int
  1395. ath5k_eeprom_init(struct ath5k_hw *ah)
  1396. {
  1397. int err;
  1398. err = ath5k_eeprom_init_header(ah);
  1399. if (err < 0)
  1400. return err;
  1401. err = ath5k_eeprom_init_modes(ah);
  1402. if (err < 0)
  1403. return err;
  1404. err = ath5k_eeprom_read_pcal_info(ah);
  1405. if (err < 0)
  1406. return err;
  1407. err = ath5k_eeprom_read_ctl_info(ah);
  1408. if (err < 0)
  1409. return err;
  1410. return 0;
  1411. }
  1412. /*
  1413. * Read the MAC address from eeprom
  1414. */
  1415. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1416. {
  1417. u8 mac_d[ETH_ALEN] = {};
  1418. u32 total, offset;
  1419. u16 data;
  1420. int octet, ret;
  1421. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1422. if (ret)
  1423. return ret;
  1424. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1425. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1426. if (ret)
  1427. return ret;
  1428. total += data;
  1429. mac_d[octet + 1] = data & 0xff;
  1430. mac_d[octet] = data >> 8;
  1431. octet += 2;
  1432. }
  1433. if (!total || total == 3 * 0xffff)
  1434. return -EINVAL;
  1435. memcpy(mac, mac_d, ETH_ALEN);
  1436. return 0;
  1437. }
  1438. int ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
  1439. {
  1440. u16 data;
  1441. ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
  1442. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
  1443. return 1;
  1444. else
  1445. return 0;
  1446. }