You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ath9k_ar9003_phy.c 37KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Modified for iPXE by Scott K Logan <logans@cottsay.net> July 2011
  5. * Original from Linux kernel 3.0.1
  6. *
  7. * Permission to use, copy, modify, and/or distribute this software for any
  8. * purpose with or without fee is hereby granted, provided that the above
  9. * copyright notice and this permission notice appear in all copies.
  10. *
  11. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include <ipxe/io.h>
  20. #include "hw.h"
  21. #include "ar9003_phy.h"
  22. static const int firstep_table[] =
  23. /* level: 0 1 2 3 4 5 6 7 8 */
  24. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  25. static const int cycpwrThr1_table[] =
  26. /* level: 0 1 2 3 4 5 6 7 8 */
  27. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  28. /*
  29. * register values to turn OFDM weak signal detection OFF
  30. */
  31. static const int m1ThreshLow_off = 127;
  32. static const int m2ThreshLow_off = 127;
  33. static const int m1Thresh_off = 127;
  34. static const int m2Thresh_off = 127;
  35. static const int m2CountThr_off = 31;
  36. static const int m2CountThrLow_off = 63;
  37. static const int m1ThreshLowExt_off = 127;
  38. static const int m2ThreshLowExt_off = 127;
  39. static const int m1ThreshExt_off = 127;
  40. static const int m2ThreshExt_off = 127;
  41. /**
  42. * ar9003_hw_set_channel - set channel on single-chip device
  43. * @ah: atheros hardware structure
  44. * @chan:
  45. *
  46. * This is the function to change channel on single-chip devices, that is
  47. * all devices after ar9280.
  48. *
  49. * This function takes the channel value in MHz and sets
  50. * hardware channel value. Assumes writes have been enabled to analog bus.
  51. *
  52. * Actual Expression,
  53. *
  54. * For 2GHz channel,
  55. * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  56. * (freq_ref = 40MHz)
  57. *
  58. * For 5GHz channel,
  59. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
  60. * (freq_ref = 40MHz/(24>>amodeRefSel))
  61. *
  62. * For 5GHz channels which are 5MHz spaced,
  63. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  64. * (freq_ref = 40MHz)
  65. */
  66. static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  67. {
  68. u16 bMode, fracMode = 0, aModeRefSel = 0;
  69. u32 freq, channelSel = 0, reg32 = 0;
  70. struct chan_centers centers;
  71. int loadSynthChannel;
  72. ath9k_hw_get_channel_centers(ah, chan, &centers);
  73. freq = centers.synth_center;
  74. if (freq < 4800) { /* 2 GHz, fractional mode */
  75. if (AR_SREV_9485(ah)) {
  76. u32 chan_frac;
  77. /*
  78. * freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0
  79. * ndiv = ((chan_mhz * 4) / 3) / freq_ref;
  80. * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
  81. */
  82. channelSel = (freq * 4) / 120;
  83. chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
  84. channelSel = (channelSel << 17) | chan_frac;
  85. } else if (AR_SREV_9340(ah)) {
  86. if (ah->is_clk_25mhz) {
  87. u32 chan_frac;
  88. channelSel = (freq * 2) / 75;
  89. chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
  90. channelSel = (channelSel << 17) | chan_frac;
  91. } else
  92. channelSel = CHANSEL_2G(freq) >> 1;
  93. } else
  94. channelSel = CHANSEL_2G(freq);
  95. /* Set to 2G mode */
  96. bMode = 1;
  97. } else {
  98. if (AR_SREV_9340(ah) && ah->is_clk_25mhz) {
  99. u32 chan_frac;
  100. channelSel = (freq * 2) / 75;
  101. chan_frac = ((freq % 75) * 0x20000) / 75;
  102. channelSel = (channelSel << 17) | chan_frac;
  103. } else {
  104. channelSel = CHANSEL_5G(freq);
  105. /* Doubler is ON, so, divide channelSel by 2. */
  106. channelSel >>= 1;
  107. }
  108. /* Set to 5G mode */
  109. bMode = 0;
  110. }
  111. /* Enable fractional mode for all channels */
  112. fracMode = 1;
  113. aModeRefSel = 0;
  114. loadSynthChannel = 0;
  115. reg32 = (bMode << 29);
  116. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  117. /* Enable Long shift Select for Synthesizer */
  118. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
  119. AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
  120. /* Program Synth. setting */
  121. reg32 = (channelSel << 2) | (fracMode << 30) |
  122. (aModeRefSel << 28) | (loadSynthChannel << 31);
  123. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  124. /* Toggle Load Synth channel bit */
  125. loadSynthChannel = 1;
  126. reg32 = (channelSel << 2) | (fracMode << 30) |
  127. (aModeRefSel << 28) | (loadSynthChannel << 31);
  128. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  129. ah->curchan = chan;
  130. ah->curchan_rad_index = -1;
  131. return 0;
  132. }
  133. /**
  134. * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
  135. * @ah: atheros hardware structure
  136. * @chan:
  137. *
  138. * For single-chip solutions. Converts to baseband spur frequency given the
  139. * input channel frequency and compute register settings below.
  140. *
  141. * Spur mitigation for MRC CCK
  142. */
  143. static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
  144. struct ath9k_channel *chan)
  145. {
  146. static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
  147. int cur_bb_spur, negative = 0, cck_spur_freq;
  148. int i;
  149. int range, max_spur_cnts, synth_freq;
  150. u8 *spur_fbin_ptr = NULL;
  151. /*
  152. * Need to verify range +/- 10 MHz in control channel, otherwise spur
  153. * is out-of-band and can be ignored.
  154. */
  155. if (AR_SREV_9485(ah) || AR_SREV_9340(ah)) {
  156. spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah,
  157. IS_CHAN_2GHZ(chan));
  158. if (spur_fbin_ptr[0] == 0) /* No spur */
  159. return;
  160. max_spur_cnts = 5;
  161. if (IS_CHAN_HT40(chan)) {
  162. range = 19;
  163. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  164. AR_PHY_GC_DYN2040_PRI_CH) == 0)
  165. synth_freq = chan->channel + 10;
  166. else
  167. synth_freq = chan->channel - 10;
  168. } else {
  169. range = 10;
  170. synth_freq = chan->channel;
  171. }
  172. } else {
  173. range = 10;
  174. max_spur_cnts = 4;
  175. synth_freq = chan->channel;
  176. }
  177. for (i = 0; i < max_spur_cnts; i++) {
  178. negative = 0;
  179. if (AR_SREV_9485(ah) || AR_SREV_9340(ah))
  180. cur_bb_spur = FBIN2FREQ(spur_fbin_ptr[i],
  181. IS_CHAN_2GHZ(chan)) - synth_freq;
  182. else
  183. cur_bb_spur = spur_freq[i] - synth_freq;
  184. if (cur_bb_spur < 0) {
  185. negative = 1;
  186. cur_bb_spur = -cur_bb_spur;
  187. }
  188. if (cur_bb_spur < range) {
  189. cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
  190. if (negative == 1)
  191. cck_spur_freq = -cck_spur_freq;
  192. cck_spur_freq = cck_spur_freq & 0xfffff;
  193. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  194. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
  195. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  196. AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
  197. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  198. AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
  199. 0x2);
  200. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  201. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
  202. 0x1);
  203. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  204. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
  205. cck_spur_freq);
  206. return;
  207. }
  208. }
  209. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  210. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
  211. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  212. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
  213. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  214. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
  215. }
  216. /* Clean all spur register fields */
  217. static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
  218. {
  219. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  220. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
  221. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  222. AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
  223. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  224. AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
  225. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  226. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
  227. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  228. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
  229. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  230. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
  231. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  232. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
  233. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  234. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
  235. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  236. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
  237. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  238. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
  239. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  240. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
  241. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  242. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
  243. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  244. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
  245. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  246. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
  247. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  248. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
  249. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  250. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
  251. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  252. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
  253. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  254. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
  255. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  256. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
  257. }
  258. static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
  259. int freq_offset,
  260. int spur_freq_sd,
  261. int spur_delta_phase,
  262. int spur_subchannel_sd)
  263. {
  264. int mask_index = 0;
  265. /* OFDM Spur mitigation */
  266. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  267. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
  268. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  269. AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
  270. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  271. AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
  272. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  273. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
  274. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  275. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
  276. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  277. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
  278. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  279. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
  280. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  281. AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
  282. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  283. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
  284. if (REG_READ_FIELD(ah, AR_PHY_MODE,
  285. AR_PHY_MODE_DYNAMIC) == 0x1)
  286. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  287. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
  288. mask_index = (freq_offset << 4) / 5;
  289. if (mask_index < 0)
  290. mask_index = mask_index - 1;
  291. mask_index = mask_index & 0x7f;
  292. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  293. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
  294. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  295. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
  296. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  297. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
  298. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  299. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
  300. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  301. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
  302. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  303. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
  304. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  305. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
  306. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  307. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
  308. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  309. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  310. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  311. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
  312. }
  313. static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
  314. struct ath9k_channel *chan,
  315. int freq_offset)
  316. {
  317. int spur_freq_sd = 0;
  318. int spur_subchannel_sd = 0;
  319. int spur_delta_phase = 0;
  320. if (IS_CHAN_HT40(chan)) {
  321. if (freq_offset < 0) {
  322. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  323. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  324. spur_subchannel_sd = 1;
  325. else
  326. spur_subchannel_sd = 0;
  327. spur_freq_sd = ((freq_offset + 10) << 9) / 11;
  328. } else {
  329. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  330. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  331. spur_subchannel_sd = 0;
  332. else
  333. spur_subchannel_sd = 1;
  334. spur_freq_sd = ((freq_offset - 10) << 9) / 11;
  335. }
  336. spur_delta_phase = (freq_offset << 17) / 5;
  337. } else {
  338. spur_subchannel_sd = 0;
  339. spur_freq_sd = (freq_offset << 9) /11;
  340. spur_delta_phase = (freq_offset << 18) / 5;
  341. }
  342. spur_freq_sd = spur_freq_sd & 0x3ff;
  343. spur_delta_phase = spur_delta_phase & 0xfffff;
  344. ar9003_hw_spur_ofdm(ah,
  345. freq_offset,
  346. spur_freq_sd,
  347. spur_delta_phase,
  348. spur_subchannel_sd);
  349. }
  350. /* Spur mitigation for OFDM */
  351. static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
  352. struct ath9k_channel *chan)
  353. {
  354. int synth_freq;
  355. int range = 10;
  356. int freq_offset = 0;
  357. int mode;
  358. u8* spurChansPtr;
  359. unsigned int i;
  360. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  361. if (IS_CHAN_5GHZ(chan)) {
  362. spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
  363. mode = 0;
  364. }
  365. else {
  366. spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
  367. mode = 1;
  368. }
  369. if (spurChansPtr[0] == 0)
  370. return; /* No spur in the mode */
  371. if (IS_CHAN_HT40(chan)) {
  372. range = 19;
  373. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  374. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  375. synth_freq = chan->channel - 10;
  376. else
  377. synth_freq = chan->channel + 10;
  378. } else {
  379. range = 10;
  380. synth_freq = chan->channel;
  381. }
  382. ar9003_hw_spur_ofdm_clear(ah);
  383. for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
  384. freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq;
  385. if (abs(freq_offset) < range) {
  386. ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
  387. break;
  388. }
  389. }
  390. }
  391. static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
  392. struct ath9k_channel *chan)
  393. {
  394. ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
  395. ar9003_hw_spur_mitigate_ofdm(ah, chan);
  396. }
  397. static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah __unused,
  398. struct ath9k_channel *chan)
  399. {
  400. u32 pll;
  401. pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
  402. if (chan && IS_CHAN_HALF_RATE(chan))
  403. pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
  404. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  405. pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
  406. pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
  407. return pll;
  408. }
  409. static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
  410. struct ath9k_channel *chan)
  411. {
  412. u32 phymode;
  413. u32 enableDacFifo = 0;
  414. enableDacFifo =
  415. (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
  416. /* Enable 11n HT, 20 MHz */
  417. phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH |
  418. AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
  419. /* Configure baseband for dynamic 20/40 operation */
  420. if (IS_CHAN_HT40(chan)) {
  421. phymode |= AR_PHY_GC_DYN2040_EN;
  422. /* Configure control (primary) channel at +-10MHz */
  423. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  424. (chan->chanmode == CHANNEL_G_HT40PLUS))
  425. phymode |= AR_PHY_GC_DYN2040_PRI_CH;
  426. }
  427. /* make sure we preserve INI settings */
  428. phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
  429. /* turn off Green Field detection for STA for now */
  430. phymode &= ~AR_PHY_GC_GF_DETECT_EN;
  431. REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
  432. /* Configure MAC for 20/40 operation */
  433. ath9k_hw_set11nmac2040(ah);
  434. /* global transmit timeout (25 TUs default)*/
  435. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  436. /* carrier sense timeout */
  437. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  438. }
  439. static void ar9003_hw_init_bb(struct ath_hw *ah,
  440. struct ath9k_channel *chan)
  441. {
  442. u32 synthDelay;
  443. /*
  444. * Wait for the frequency synth to settle (synth goes on
  445. * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
  446. * Value is in 100ns increments.
  447. */
  448. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  449. if (IS_CHAN_B(chan))
  450. synthDelay = (4 * synthDelay) / 22;
  451. else
  452. synthDelay /= 10;
  453. /* Activate the PHY (includes baseband activate + synthesizer on) */
  454. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  455. /*
  456. * There is an issue if the AP starts the calibration before
  457. * the base band timeout completes. This could result in the
  458. * rx_clear false triggering. As a workaround we add delay an
  459. * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
  460. * does not happen.
  461. */
  462. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  463. }
  464. void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
  465. {
  466. switch (rx) {
  467. case 0x5:
  468. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  469. AR_PHY_SWAP_ALT_CHAIN);
  470. /* Fall through */
  471. case 0x3:
  472. case 0x1:
  473. case 0x2:
  474. case 0x7:
  475. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
  476. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
  477. break;
  478. default:
  479. break;
  480. }
  481. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
  482. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  483. else
  484. REG_WRITE(ah, AR_SELFGEN_MASK, tx);
  485. if (tx == 0x5) {
  486. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  487. AR_PHY_SWAP_ALT_CHAIN);
  488. }
  489. }
  490. /*
  491. * Override INI values with chip specific configuration.
  492. */
  493. static void ar9003_hw_override_ini(struct ath_hw *ah)
  494. {
  495. u32 val;
  496. /*
  497. * Set the RX_ABORT and RX_DIS and clear it only after
  498. * RXE is set for MAC. This prevents frames with
  499. * corrupted descriptor status.
  500. */
  501. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  502. /*
  503. * For AR9280 and above, there is a new feature that allows
  504. * Multicast search based on both MAC Address and Key ID. By default,
  505. * this feature is enabled. But since the driver is not using this
  506. * feature, we switch it off; otherwise multicast search based on
  507. * MAC addr only will fail.
  508. */
  509. val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
  510. REG_WRITE(ah, AR_PCU_MISC_MODE2,
  511. val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
  512. }
  513. static void ar9003_hw_prog_ini(struct ath_hw *ah,
  514. struct ar5416IniArray *iniArr,
  515. int column)
  516. {
  517. unsigned int i, regWrites = 0;
  518. /* New INI format: Array may be undefined (pre, core, post arrays) */
  519. if (!iniArr->ia_array)
  520. return;
  521. /*
  522. * New INI format: Pre, core, and post arrays for a given subsystem
  523. * may be modal (> 2 columns) or non-modal (2 columns). Determine if
  524. * the array is non-modal and force the column to 1.
  525. */
  526. if ((unsigned int)column >= iniArr->ia_columns)
  527. column = 1;
  528. for (i = 0; i < iniArr->ia_rows; i++) {
  529. u32 reg = INI_RA(iniArr, i, 0);
  530. u32 val = INI_RA(iniArr, i, column);
  531. REG_WRITE(ah, reg, val);
  532. DO_DELAY(regWrites);
  533. }
  534. }
  535. static int ar9003_hw_process_ini(struct ath_hw *ah,
  536. struct ath9k_channel *chan)
  537. {
  538. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  539. unsigned int regWrites = 0, i;
  540. struct net80211_channel *channel = chan->chan;
  541. u32 modesIndex;
  542. switch (chan->chanmode) {
  543. case CHANNEL_A:
  544. case CHANNEL_A_HT20:
  545. modesIndex = 1;
  546. break;
  547. case CHANNEL_A_HT40PLUS:
  548. case CHANNEL_A_HT40MINUS:
  549. modesIndex = 2;
  550. break;
  551. case CHANNEL_G:
  552. case CHANNEL_G_HT20:
  553. case CHANNEL_B:
  554. modesIndex = 4;
  555. break;
  556. case CHANNEL_G_HT40PLUS:
  557. case CHANNEL_G_HT40MINUS:
  558. modesIndex = 3;
  559. break;
  560. default:
  561. return -EINVAL;
  562. }
  563. for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
  564. ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
  565. ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
  566. ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
  567. ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
  568. }
  569. REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
  570. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  571. /*
  572. * For 5GHz channels requiring Fast Clock, apply
  573. * different modal values.
  574. */
  575. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  576. REG_WRITE_ARRAY(&ah->iniModesAdditional,
  577. modesIndex, regWrites);
  578. if (AR_SREV_9340(ah) && !ah->is_clk_25mhz)
  579. REG_WRITE_ARRAY(&ah->iniModesAdditional_40M, 1, regWrites);
  580. ar9003_hw_override_ini(ah);
  581. ar9003_hw_set_channel_regs(ah, chan);
  582. ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
  583. /* Set TX power */
  584. ah->eep_ops->set_txpower(ah, chan,
  585. ath9k_regd_get_ctl(regulatory, chan),
  586. 0,
  587. channel->maxpower * 2,
  588. min((u32) MAX_RATE_POWER,
  589. (u32) regulatory->power_limit), 0);
  590. return 0;
  591. }
  592. static void ar9003_hw_set_rfmode(struct ath_hw *ah,
  593. struct ath9k_channel *chan)
  594. {
  595. u32 rfMode = 0;
  596. if (chan == NULL)
  597. return;
  598. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  599. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  600. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  601. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  602. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  603. }
  604. static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
  605. {
  606. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  607. }
  608. static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
  609. struct ath9k_channel *chan)
  610. {
  611. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  612. u32 clockMhzScaled = 0x64000000;
  613. struct chan_centers centers;
  614. /*
  615. * half and quarter rate can divide the scaled clock by 2 or 4
  616. * scale for selected channel bandwidth
  617. */
  618. if (IS_CHAN_HALF_RATE(chan))
  619. clockMhzScaled = clockMhzScaled >> 1;
  620. else if (IS_CHAN_QUARTER_RATE(chan))
  621. clockMhzScaled = clockMhzScaled >> 2;
  622. /*
  623. * ALGO -> coef = 1e8/fcarrier*fclock/40;
  624. * scaled coef to provide precision for this floating calculation
  625. */
  626. ath9k_hw_get_channel_centers(ah, chan, &centers);
  627. coef_scaled = clockMhzScaled / centers.synth_center;
  628. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  629. &ds_coef_exp);
  630. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  631. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  632. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  633. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  634. /*
  635. * For Short GI,
  636. * scaled coeff is 9/10 that of normal coeff
  637. */
  638. coef_scaled = (9 * coef_scaled) / 10;
  639. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  640. &ds_coef_exp);
  641. /* for short gi */
  642. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  643. AR_PHY_SGI_DSC_MAN, ds_coef_man);
  644. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  645. AR_PHY_SGI_DSC_EXP, ds_coef_exp);
  646. }
  647. static int ar9003_hw_rfbus_req(struct ath_hw *ah)
  648. {
  649. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  650. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  651. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  652. }
  653. /*
  654. * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
  655. * Read the phy active delay register. Value is in 100ns increments.
  656. */
  657. static void ar9003_hw_rfbus_done(struct ath_hw *ah)
  658. {
  659. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  660. if (IS_CHAN_B(ah->curchan))
  661. synthDelay = (4 * synthDelay) / 22;
  662. else
  663. synthDelay /= 10;
  664. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  665. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  666. }
  667. static void ar9003_hw_set_diversity(struct ath_hw *ah, int value)
  668. {
  669. u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
  670. if (value)
  671. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  672. else
  673. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  674. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  675. }
  676. static int ar9003_hw_ani_control(struct ath_hw *ah,
  677. enum ath9k_ani_cmd cmd, int param)
  678. {
  679. struct ath9k_channel *chan = ah->curchan;
  680. struct ar5416AniState *aniState = &chan->ani;
  681. s32 value, value2;
  682. switch (cmd & ah->ani_function) {
  683. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  684. /*
  685. * on == 1 means ofdm weak signal detection is ON
  686. * on == 1 is the default, for less noise immunity
  687. *
  688. * on == 0 means ofdm weak signal detection is OFF
  689. * on == 0 means more noise imm
  690. */
  691. u32 on = param ? 1 : 0;
  692. /*
  693. * make register setting for default
  694. * (weak sig detect ON) come from INI file
  695. */
  696. int m1ThreshLow = on ?
  697. aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
  698. int m2ThreshLow = on ?
  699. aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
  700. int m1Thresh = on ?
  701. aniState->iniDef.m1Thresh : m1Thresh_off;
  702. int m2Thresh = on ?
  703. aniState->iniDef.m2Thresh : m2Thresh_off;
  704. int m2CountThr = on ?
  705. aniState->iniDef.m2CountThr : m2CountThr_off;
  706. int m2CountThrLow = on ?
  707. aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
  708. int m1ThreshLowExt = on ?
  709. aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
  710. int m2ThreshLowExt = on ?
  711. aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
  712. int m1ThreshExt = on ?
  713. aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
  714. int m2ThreshExt = on ?
  715. aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
  716. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  717. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  718. m1ThreshLow);
  719. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  720. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  721. m2ThreshLow);
  722. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  723. AR_PHY_SFCORR_M1_THRESH, m1Thresh);
  724. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  725. AR_PHY_SFCORR_M2_THRESH, m2Thresh);
  726. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  727. AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
  728. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  729. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  730. m2CountThrLow);
  731. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  732. AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
  733. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  734. AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
  735. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  736. AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
  737. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  738. AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
  739. if (on)
  740. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  741. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  742. else
  743. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  744. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  745. if (on != aniState->ofdmWeakSigDetect) {
  746. DBG2("ath9k: "
  747. "** ch %d: ofdm weak signal: %s=>%s\n",
  748. chan->channel,
  749. aniState->ofdmWeakSigDetect ?
  750. "on" : "off",
  751. on ? "on" : "off");
  752. if (on)
  753. ah->stats.ast_ani_ofdmon++;
  754. else
  755. ah->stats.ast_ani_ofdmoff++;
  756. aniState->ofdmWeakSigDetect = on;
  757. }
  758. break;
  759. }
  760. case ATH9K_ANI_FIRSTEP_LEVEL:{
  761. u32 level = param;
  762. if (level >= ARRAY_SIZE(firstep_table)) {
  763. DBG("ath9k: "
  764. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%d > %zd)\n",
  765. level, ARRAY_SIZE(firstep_table));
  766. return 0;
  767. }
  768. /*
  769. * make register setting relative to default
  770. * from INI file & cap value
  771. */
  772. value = firstep_table[level] -
  773. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  774. aniState->iniDef.firstep;
  775. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  776. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  777. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  778. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  779. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  780. AR_PHY_FIND_SIG_FIRSTEP,
  781. value);
  782. /*
  783. * we need to set first step low register too
  784. * make register setting relative to default
  785. * from INI file & cap value
  786. */
  787. value2 = firstep_table[level] -
  788. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  789. aniState->iniDef.firstepLow;
  790. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  791. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  792. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  793. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  794. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  795. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
  796. if (level != aniState->firstepLevel) {
  797. DBG2("ath9k: "
  798. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  799. chan->channel,
  800. aniState->firstepLevel,
  801. level,
  802. ATH9K_ANI_FIRSTEP_LVL_NEW,
  803. value,
  804. aniState->iniDef.firstep);
  805. DBG2("ath9k: "
  806. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  807. chan->channel,
  808. aniState->firstepLevel,
  809. level,
  810. ATH9K_ANI_FIRSTEP_LVL_NEW,
  811. value2,
  812. aniState->iniDef.firstepLow);
  813. if (level > aniState->firstepLevel)
  814. ah->stats.ast_ani_stepup++;
  815. else if (level < aniState->firstepLevel)
  816. ah->stats.ast_ani_stepdown++;
  817. aniState->firstepLevel = level;
  818. }
  819. break;
  820. }
  821. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  822. u32 level = param;
  823. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  824. DBG("ath9k: "
  825. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%d > %zd)\n",
  826. level, ARRAY_SIZE(cycpwrThr1_table));
  827. return 0;
  828. }
  829. /*
  830. * make register setting relative to default
  831. * from INI file & cap value
  832. */
  833. value = cycpwrThr1_table[level] -
  834. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  835. aniState->iniDef.cycpwrThr1;
  836. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  837. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  838. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  839. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  840. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  841. AR_PHY_TIMING5_CYCPWR_THR1,
  842. value);
  843. /*
  844. * set AR_PHY_EXT_CCA for extension channel
  845. * make register setting relative to default
  846. * from INI file & cap value
  847. */
  848. value2 = cycpwrThr1_table[level] -
  849. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  850. aniState->iniDef.cycpwrThr1Ext;
  851. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  852. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  853. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  854. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  855. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  856. AR_PHY_EXT_CYCPWR_THR1, value2);
  857. if (level != aniState->spurImmunityLevel) {
  858. DBG2("ath9k: "
  859. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  860. chan->channel,
  861. aniState->spurImmunityLevel,
  862. level,
  863. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  864. value,
  865. aniState->iniDef.cycpwrThr1);
  866. DBG2("ath9k: "
  867. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  868. chan->channel,
  869. aniState->spurImmunityLevel,
  870. level,
  871. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  872. value2,
  873. aniState->iniDef.cycpwrThr1Ext);
  874. if (level > aniState->spurImmunityLevel)
  875. ah->stats.ast_ani_spurup++;
  876. else if (level < aniState->spurImmunityLevel)
  877. ah->stats.ast_ani_spurdown++;
  878. aniState->spurImmunityLevel = level;
  879. }
  880. break;
  881. }
  882. case ATH9K_ANI_MRC_CCK:{
  883. /*
  884. * is_on == 1 means MRC CCK ON (default, less noise imm)
  885. * is_on == 0 means MRC CCK is OFF (more noise imm)
  886. */
  887. int is_on = param ? 1 : 0;
  888. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  889. AR_PHY_MRC_CCK_ENABLE, is_on);
  890. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  891. AR_PHY_MRC_CCK_MUX_REG, is_on);
  892. if (!(is_on != aniState->mrcCCKOff)) {
  893. DBG2("ath9k: "
  894. "** ch %d: MRC CCK: %s=>%s\n",
  895. chan->channel,
  896. !aniState->mrcCCKOff ? "on" : "off",
  897. is_on ? "on" : "off");
  898. if (is_on)
  899. ah->stats.ast_ani_ccklow++;
  900. else
  901. ah->stats.ast_ani_cckhigh++;
  902. aniState->mrcCCKOff = !is_on;
  903. }
  904. break;
  905. }
  906. case ATH9K_ANI_PRESENT:
  907. break;
  908. default:
  909. DBG2("ath9k: invalid cmd %d\n", cmd);
  910. return 0;
  911. }
  912. DBG2("ath9k: "
  913. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  914. aniState->spurImmunityLevel,
  915. aniState->ofdmWeakSigDetect ? "on" : "off",
  916. aniState->firstepLevel,
  917. !aniState->mrcCCKOff ? "on" : "off",
  918. aniState->listenTime,
  919. aniState->ofdmPhyErrCount,
  920. aniState->cckPhyErrCount);
  921. return 1;
  922. }
  923. static void ar9003_hw_do_getnf(struct ath_hw *ah,
  924. int16_t nfarray[NUM_NF_READINGS])
  925. {
  926. #define AR_PHY_CH_MINCCA_PWR 0x1FF00000
  927. #define AR_PHY_CH_MINCCA_PWR_S 20
  928. #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
  929. #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
  930. int16_t nf;
  931. int i;
  932. for (i = 0; i < AR9300_MAX_CHAINS; i++) {
  933. if (ah->rxchainmask & BIT(i)) {
  934. nf = MS(REG_READ(ah, ah->nf_regs[i]),
  935. AR_PHY_CH_MINCCA_PWR);
  936. nfarray[i] = sign_extend32(nf, 8);
  937. if (IS_CHAN_HT40(ah->curchan)) {
  938. u8 ext_idx = AR9300_MAX_CHAINS + i;
  939. nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
  940. AR_PHY_CH_EXT_MINCCA_PWR);
  941. nfarray[ext_idx] = sign_extend32(nf, 8);
  942. }
  943. }
  944. }
  945. }
  946. static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
  947. {
  948. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
  949. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
  950. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
  951. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
  952. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
  953. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
  954. }
  955. /*
  956. * Initialize the ANI register values with default (ini) values.
  957. * This routine is called during a (full) hardware reset after
  958. * all the registers are initialised from the INI.
  959. */
  960. static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
  961. {
  962. struct ar5416AniState *aniState;
  963. struct ath9k_channel *chan = ah->curchan;
  964. struct ath9k_ani_default *iniDef;
  965. u32 val;
  966. aniState = &ah->curchan->ani;
  967. iniDef = &aniState->iniDef;
  968. DBG2("ath9k: "
  969. "ver %d.%d chan %d Mhz/0x%x\n",
  970. ah->hw_version.macVersion,
  971. ah->hw_version.macRev,
  972. chan->channel,
  973. chan->channelFlags);
  974. val = REG_READ(ah, AR_PHY_SFCORR);
  975. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  976. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  977. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  978. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  979. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  980. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  981. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  982. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  983. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  984. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  985. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  986. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  987. iniDef->firstep = REG_READ_FIELD(ah,
  988. AR_PHY_FIND_SIG,
  989. AR_PHY_FIND_SIG_FIRSTEP);
  990. iniDef->firstepLow = REG_READ_FIELD(ah,
  991. AR_PHY_FIND_SIG_LOW,
  992. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
  993. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  994. AR_PHY_TIMING5,
  995. AR_PHY_TIMING5_CYCPWR_THR1);
  996. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  997. AR_PHY_EXT_CCA,
  998. AR_PHY_EXT_CYCPWR_THR1);
  999. /* these levels just got reset to defaults by the INI */
  1000. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
  1001. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
  1002. aniState->ofdmWeakSigDetect = ATH9K_ANI_USE_OFDM_WEAK_SIG;
  1003. aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
  1004. }
  1005. static void ar9003_hw_set_radar_params(struct ath_hw *ah,
  1006. struct ath_hw_radar_conf *conf)
  1007. {
  1008. u32 radar_0 = 0, radar_1 = 0;
  1009. if (!conf) {
  1010. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  1011. return;
  1012. }
  1013. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  1014. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  1015. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  1016. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  1017. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  1018. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  1019. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  1020. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  1021. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  1022. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  1023. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  1024. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  1025. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  1026. if (conf->ext_channel)
  1027. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1028. else
  1029. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1030. }
  1031. static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
  1032. {
  1033. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1034. conf->fir_power = -28;
  1035. conf->radar_rssi = 0;
  1036. conf->pulse_height = 10;
  1037. conf->pulse_rssi = 24;
  1038. conf->pulse_inband = 8;
  1039. conf->pulse_maxlen = 255;
  1040. conf->pulse_inband_step = 12;
  1041. conf->radar_inband = 8;
  1042. }
  1043. static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
  1044. struct ath_hw_antcomb_conf *antconf)
  1045. {
  1046. u32 regval;
  1047. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1048. antconf->main_lna_conf = (regval & AR_PHY_9485_ANT_DIV_MAIN_LNACONF) >>
  1049. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S;
  1050. antconf->alt_lna_conf = (regval & AR_PHY_9485_ANT_DIV_ALT_LNACONF) >>
  1051. AR_PHY_9485_ANT_DIV_ALT_LNACONF_S;
  1052. antconf->fast_div_bias = (regval & AR_PHY_9485_ANT_FAST_DIV_BIAS) >>
  1053. AR_PHY_9485_ANT_FAST_DIV_BIAS_S;
  1054. antconf->lna1_lna2_delta = -9;
  1055. antconf->div_group = 2;
  1056. }
  1057. static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
  1058. struct ath_hw_antcomb_conf *antconf)
  1059. {
  1060. u32 regval;
  1061. regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
  1062. regval &= ~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
  1063. AR_PHY_9485_ANT_DIV_ALT_LNACONF |
  1064. AR_PHY_9485_ANT_FAST_DIV_BIAS |
  1065. AR_PHY_9485_ANT_DIV_MAIN_GAINTB |
  1066. AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1067. regval |= ((antconf->main_lna_conf <<
  1068. AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S)
  1069. & AR_PHY_9485_ANT_DIV_MAIN_LNACONF);
  1070. regval |= ((antconf->alt_lna_conf << AR_PHY_9485_ANT_DIV_ALT_LNACONF_S)
  1071. & AR_PHY_9485_ANT_DIV_ALT_LNACONF);
  1072. regval |= ((antconf->fast_div_bias << AR_PHY_9485_ANT_FAST_DIV_BIAS_S)
  1073. & AR_PHY_9485_ANT_FAST_DIV_BIAS);
  1074. regval |= ((antconf->main_gaintb << AR_PHY_9485_ANT_DIV_MAIN_GAINTB_S)
  1075. & AR_PHY_9485_ANT_DIV_MAIN_GAINTB);
  1076. regval |= ((antconf->alt_gaintb << AR_PHY_9485_ANT_DIV_ALT_GAINTB_S)
  1077. & AR_PHY_9485_ANT_DIV_ALT_GAINTB);
  1078. REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
  1079. }
  1080. void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
  1081. {
  1082. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1083. struct ath_hw_ops *ops = ath9k_hw_ops(ah);
  1084. static const u32 ar9300_cca_regs[6] = {
  1085. AR_PHY_CCA_0,
  1086. AR_PHY_CCA_1,
  1087. AR_PHY_CCA_2,
  1088. AR_PHY_EXT_CCA,
  1089. AR_PHY_EXT_CCA_1,
  1090. AR_PHY_EXT_CCA_2,
  1091. };
  1092. priv_ops->rf_set_freq = ar9003_hw_set_channel;
  1093. priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
  1094. priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
  1095. priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
  1096. priv_ops->init_bb = ar9003_hw_init_bb;
  1097. priv_ops->process_ini = ar9003_hw_process_ini;
  1098. priv_ops->set_rfmode = ar9003_hw_set_rfmode;
  1099. priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
  1100. priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
  1101. priv_ops->rfbus_req = ar9003_hw_rfbus_req;
  1102. priv_ops->rfbus_done = ar9003_hw_rfbus_done;
  1103. priv_ops->set_diversity = ar9003_hw_set_diversity;
  1104. priv_ops->ani_control = ar9003_hw_ani_control;
  1105. priv_ops->do_getnf = ar9003_hw_do_getnf;
  1106. priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
  1107. priv_ops->set_radar_params = ar9003_hw_set_radar_params;
  1108. ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
  1109. ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
  1110. ar9003_hw_set_nf_limits(ah);
  1111. ar9003_hw_set_radar_conf(ah);
  1112. memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
  1113. }
  1114. void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
  1115. {
  1116. u32 val;
  1117. val = REG_READ(ah, AR_PHY_RESTART);
  1118. val &= ~AR_PHY_RESTART_ENA;
  1119. REG_WRITE(ah, AR_PHY_RESTART, val);
  1120. }