Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

skge.c 64KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471
  1. /*
  2. * gPXE driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Derived from Linux skge driver (v1.13), which was
  4. * based on earlier sk98lin, e100 and FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * Modified for gPXE, July 2008 by Michael Decker and in
  13. * December 2009 by Thomas Miletich <thomas.miletich@gmail.com>
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  27. */
  28. FILE_LICENCE ( GPL2_ONLY );
  29. #include <stdint.h>
  30. #include <errno.h>
  31. #include <stdio.h>
  32. #include <unistd.h>
  33. #include <gpxe/netdevice.h>
  34. #include <gpxe/ethernet.h>
  35. #include <gpxe/if_ether.h>
  36. #include <gpxe/iobuf.h>
  37. #include <gpxe/malloc.h>
  38. #include <gpxe/pci.h>
  39. #include "skge.h"
  40. static struct pci_device_id skge_id_table[] = {
  41. PCI_ROM(0x10b7, 0x1700, "3C940", "3COM 3C940", 0),
  42. PCI_ROM(0x10b7, 0x80eb, "3C940B", "3COM 3C940", 0),
  43. PCI_ROM(0x1148, 0x4300, "GE", "Syskonnect GE", 0),
  44. PCI_ROM(0x1148, 0x4320, "YU", "Syskonnect YU", 0),
  45. PCI_ROM(0x1186, 0x4C00, "DGE510T", "DLink DGE-510T", 0),
  46. PCI_ROM(0x1186, 0x4b01, "DGE530T", "DLink DGE-530T", 0),
  47. PCI_ROM(0x11ab, 0x4320, "id4320", "Marvell id4320", 0),
  48. PCI_ROM(0x11ab, 0x5005, "id5005", "Marvell id5005", 0), /* Belkin */
  49. PCI_ROM(0x1371, 0x434e, "Gigacard", "CNET Gigacard", 0),
  50. PCI_ROM(0x1737, 0x1064, "EG1064", "Linksys EG1064", 0),
  51. PCI_ROM(0x1737, 0xffff, "id_any", "Linksys [any]", 0)
  52. };
  53. static int skge_up(struct net_device *dev);
  54. static void skge_down(struct net_device *dev);
  55. static void skge_tx_clean(struct net_device *dev);
  56. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  57. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  58. static void yukon_init(struct skge_hw *hw, int port);
  59. static void genesis_mac_init(struct skge_hw *hw, int port);
  60. static void genesis_link_up(struct skge_port *skge);
  61. static void skge_phyirq(struct skge_hw *hw);
  62. static void skge_poll(struct net_device *dev);
  63. static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob);
  64. static void skge_net_irq ( struct net_device *dev, int enable );
  65. static void skge_rx_refill(struct net_device *dev);
  66. static struct net_device_operations skge_operations = {
  67. .open = skge_up,
  68. .close = skge_down,
  69. .transmit = skge_xmit_frame,
  70. .poll = skge_poll,
  71. .irq = skge_net_irq
  72. };
  73. /* Avoid conditionals by using array */
  74. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  75. static const int rxqaddr[] = { Q_R1, Q_R2 };
  76. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  77. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  78. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  79. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  80. /* Determine supported/advertised modes based on hardware.
  81. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  82. */
  83. static u32 skge_supported_modes(const struct skge_hw *hw)
  84. {
  85. u32 supported;
  86. if (hw->copper) {
  87. supported = SUPPORTED_10baseT_Half
  88. | SUPPORTED_10baseT_Full
  89. | SUPPORTED_100baseT_Half
  90. | SUPPORTED_100baseT_Full
  91. | SUPPORTED_1000baseT_Half
  92. | SUPPORTED_1000baseT_Full
  93. | SUPPORTED_Autoneg| SUPPORTED_TP;
  94. if (hw->chip_id == CHIP_ID_GENESIS)
  95. supported &= ~(SUPPORTED_10baseT_Half
  96. | SUPPORTED_10baseT_Full
  97. | SUPPORTED_100baseT_Half
  98. | SUPPORTED_100baseT_Full);
  99. else if (hw->chip_id == CHIP_ID_YUKON)
  100. supported &= ~SUPPORTED_1000baseT_Half;
  101. } else
  102. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  103. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  104. return supported;
  105. }
  106. /* Chip internal frequency for clock calculations */
  107. static inline u32 hwkhz(const struct skge_hw *hw)
  108. {
  109. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  110. }
  111. /* Microseconds to chip HZ */
  112. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  113. {
  114. return hwkhz(hw) * usec / 1000;
  115. }
  116. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  117. static void skge_led(struct skge_port *skge, enum led_mode mode)
  118. {
  119. struct skge_hw *hw = skge->hw;
  120. int port = skge->port;
  121. if (hw->chip_id == CHIP_ID_GENESIS) {
  122. switch (mode) {
  123. case LED_MODE_OFF:
  124. if (hw->phy_type == SK_PHY_BCOM)
  125. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  126. else {
  127. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  128. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  129. }
  130. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  131. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  132. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  133. break;
  134. case LED_MODE_ON:
  135. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  136. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  137. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  138. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  139. break;
  140. case LED_MODE_TST:
  141. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  142. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  143. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  144. if (hw->phy_type == SK_PHY_BCOM)
  145. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  146. else {
  147. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  148. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  149. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  150. }
  151. }
  152. } else {
  153. switch (mode) {
  154. case LED_MODE_OFF:
  155. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  156. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  157. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  158. PHY_M_LED_MO_10(MO_LED_OFF) |
  159. PHY_M_LED_MO_100(MO_LED_OFF) |
  160. PHY_M_LED_MO_1000(MO_LED_OFF) |
  161. PHY_M_LED_MO_RX(MO_LED_OFF));
  162. break;
  163. case LED_MODE_ON:
  164. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  165. PHY_M_LED_PULS_DUR(PULS_170MS) |
  166. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  167. PHY_M_LEDC_TX_CTRL |
  168. PHY_M_LEDC_DP_CTRL);
  169. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  170. PHY_M_LED_MO_RX(MO_LED_OFF) |
  171. (skge->speed == SPEED_100 ?
  172. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  173. break;
  174. case LED_MODE_TST:
  175. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  176. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  177. PHY_M_LED_MO_DUP(MO_LED_ON) |
  178. PHY_M_LED_MO_10(MO_LED_ON) |
  179. PHY_M_LED_MO_100(MO_LED_ON) |
  180. PHY_M_LED_MO_1000(MO_LED_ON) |
  181. PHY_M_LED_MO_RX(MO_LED_ON));
  182. }
  183. }
  184. }
  185. /*
  186. * I've left in these EEPROM and VPD functions, as someone may desire to
  187. * integrate them in the future. -mdeck
  188. *
  189. * static int skge_get_eeprom_len(struct net_device *dev)
  190. * {
  191. * struct skge_port *skge = netdev_priv(dev);
  192. * u32 reg2;
  193. *
  194. * pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  195. * return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  196. * }
  197. *
  198. * static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  199. * {
  200. * u32 val;
  201. *
  202. * pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  203. *
  204. * do {
  205. * pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  206. * } while (!(offset & PCI_VPD_ADDR_F));
  207. *
  208. * pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  209. * return val;
  210. * }
  211. *
  212. * static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  213. * {
  214. * pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  215. * pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  216. * offset | PCI_VPD_ADDR_F);
  217. *
  218. * do {
  219. * pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  220. * } while (offset & PCI_VPD_ADDR_F);
  221. * }
  222. *
  223. * static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  224. * u8 *data)
  225. * {
  226. * struct skge_port *skge = netdev_priv(dev);
  227. * struct pci_dev *pdev = skge->hw->pdev;
  228. * int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  229. * int length = eeprom->len;
  230. * u16 offset = eeprom->offset;
  231. *
  232. * if (!cap)
  233. * return -EINVAL;
  234. *
  235. * eeprom->magic = SKGE_EEPROM_MAGIC;
  236. *
  237. * while (length > 0) {
  238. * u32 val = skge_vpd_read(pdev, cap, offset);
  239. * int n = min_t(int, length, sizeof(val));
  240. *
  241. * memcpy(data, &val, n);
  242. * length -= n;
  243. * data += n;
  244. * offset += n;
  245. * }
  246. * return 0;
  247. * }
  248. *
  249. * static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  250. * u8 *data)
  251. * {
  252. * struct skge_port *skge = netdev_priv(dev);
  253. * struct pci_dev *pdev = skge->hw->pdev;
  254. * int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  255. * int length = eeprom->len;
  256. * u16 offset = eeprom->offset;
  257. *
  258. * if (!cap)
  259. * return -EINVAL;
  260. *
  261. * if (eeprom->magic != SKGE_EEPROM_MAGIC)
  262. * return -EINVAL;
  263. *
  264. * while (length > 0) {
  265. * u32 val;
  266. * int n = min_t(int, length, sizeof(val));
  267. *
  268. * if (n < sizeof(val))
  269. * val = skge_vpd_read(pdev, cap, offset);
  270. * memcpy(&val, data, n);
  271. *
  272. * skge_vpd_write(pdev, cap, offset, val);
  273. *
  274. * length -= n;
  275. * data += n;
  276. * offset += n;
  277. * }
  278. * return 0;
  279. * }
  280. */
  281. /*
  282. * Allocate ring elements and chain them together
  283. * One-to-one association of board descriptors with ring elements
  284. */
  285. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base,
  286. size_t num)
  287. {
  288. struct skge_tx_desc *d;
  289. struct skge_element *e;
  290. unsigned int i;
  291. ring->start = zalloc(num*sizeof(*e));
  292. if (!ring->start)
  293. return -ENOMEM;
  294. for (i = 0, e = ring->start, d = vaddr; i < num; i++, e++, d++) {
  295. e->desc = d;
  296. if (i == num - 1) {
  297. e->next = ring->start;
  298. d->next_offset = base;
  299. } else {
  300. e->next = e + 1;
  301. d->next_offset = base + (i+1) * sizeof(*d);
  302. }
  303. }
  304. ring->to_use = ring->to_clean = ring->start;
  305. return 0;
  306. }
  307. /* Allocate and setup a new buffer for receiving */
  308. static void skge_rx_setup(struct skge_port *skge __unused,
  309. struct skge_element *e,
  310. struct io_buffer *iob, unsigned int bufsize)
  311. {
  312. struct skge_rx_desc *rd = e->desc;
  313. u64 map;
  314. map = ( iob != NULL ) ? virt_to_bus(iob->data) : 0;
  315. rd->dma_lo = map;
  316. rd->dma_hi = map >> 32;
  317. e->iob = iob;
  318. rd->csum1_start = ETH_HLEN;
  319. rd->csum2_start = ETH_HLEN;
  320. rd->csum1 = 0;
  321. rd->csum2 = 0;
  322. wmb();
  323. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  324. }
  325. /* Resume receiving using existing skb,
  326. * Note: DMA address is not changed by chip.
  327. * MTU not changed while receiver active.
  328. */
  329. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  330. {
  331. struct skge_rx_desc *rd = e->desc;
  332. rd->csum2 = 0;
  333. rd->csum2_start = ETH_HLEN;
  334. wmb();
  335. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  336. }
  337. /* Free all buffers in receive ring, assumes receiver stopped */
  338. static void skge_rx_clean(struct skge_port *skge)
  339. {
  340. struct skge_ring *ring = &skge->rx_ring;
  341. struct skge_element *e;
  342. e = ring->start;
  343. do {
  344. struct skge_rx_desc *rd = e->desc;
  345. rd->control = 0;
  346. if (e->iob) {
  347. free_iob(e->iob);
  348. e->iob = NULL;
  349. }
  350. } while ((e = e->next) != ring->start);
  351. }
  352. static void skge_link_up(struct skge_port *skge)
  353. {
  354. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  355. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  356. netdev_link_up(skge->netdev);
  357. DBG2(PFX "%s: Link is up at %d Mbps, %s duplex\n",
  358. skge->netdev->name, skge->speed,
  359. skge->duplex == DUPLEX_FULL ? "full" : "half");
  360. }
  361. static void skge_link_down(struct skge_port *skge)
  362. {
  363. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  364. netdev_link_down(skge->netdev);
  365. DBG2(PFX "%s: Link is down.\n", skge->netdev->name);
  366. }
  367. static void xm_link_down(struct skge_hw *hw, int port)
  368. {
  369. struct net_device *dev = hw->dev[port];
  370. struct skge_port *skge = netdev_priv(dev);
  371. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  372. if (netdev_link_ok(dev))
  373. skge_link_down(skge);
  374. }
  375. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  376. {
  377. int i;
  378. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  379. *val = xm_read16(hw, port, XM_PHY_DATA);
  380. if (hw->phy_type == SK_PHY_XMAC)
  381. goto ready;
  382. for (i = 0; i < PHY_RETRIES; i++) {
  383. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  384. goto ready;
  385. udelay(1);
  386. }
  387. return -ETIMEDOUT;
  388. ready:
  389. *val = xm_read16(hw, port, XM_PHY_DATA);
  390. return 0;
  391. }
  392. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  393. {
  394. u16 v = 0;
  395. if (__xm_phy_read(hw, port, reg, &v))
  396. DBG(PFX "%s: phy read timed out\n",
  397. hw->dev[port]->name);
  398. return v;
  399. }
  400. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  401. {
  402. int i;
  403. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  404. for (i = 0; i < PHY_RETRIES; i++) {
  405. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  406. goto ready;
  407. udelay(1);
  408. }
  409. return -EIO;
  410. ready:
  411. xm_write16(hw, port, XM_PHY_DATA, val);
  412. for (i = 0; i < PHY_RETRIES; i++) {
  413. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  414. return 0;
  415. udelay(1);
  416. }
  417. return -ETIMEDOUT;
  418. }
  419. static void genesis_init(struct skge_hw *hw)
  420. {
  421. /* set blink source counter */
  422. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  423. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  424. /* configure mac arbiter */
  425. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  426. /* configure mac arbiter timeout values */
  427. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  428. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  429. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  430. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  431. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  432. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  433. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  434. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  435. /* configure packet arbiter timeout */
  436. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  437. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  438. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  439. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  440. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  441. }
  442. static void genesis_reset(struct skge_hw *hw, int port)
  443. {
  444. const u8 zero[8] = { 0 };
  445. u32 reg;
  446. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  447. /* reset the statistics module */
  448. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  449. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  450. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  451. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  452. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  453. /* disable Broadcom PHY IRQ */
  454. if (hw->phy_type == SK_PHY_BCOM)
  455. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  456. xm_outhash(hw, port, XM_HSM, zero);
  457. /* Flush TX and RX fifo */
  458. reg = xm_read32(hw, port, XM_MODE);
  459. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  460. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  461. }
  462. /* Convert mode to MII values */
  463. static const u16 phy_pause_map[] = {
  464. [FLOW_MODE_NONE] = 0,
  465. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  466. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  467. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  468. };
  469. /* special defines for FIBER (88E1011S only) */
  470. static const u16 fiber_pause_map[] = {
  471. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  472. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  473. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  474. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  475. };
  476. /* Check status of Broadcom phy link */
  477. static void bcom_check_link(struct skge_hw *hw, int port)
  478. {
  479. struct net_device *dev = hw->dev[port];
  480. struct skge_port *skge = netdev_priv(dev);
  481. u16 status;
  482. /* read twice because of latch */
  483. xm_phy_read(hw, port, PHY_BCOM_STAT);
  484. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  485. if ((status & PHY_ST_LSYNC) == 0) {
  486. xm_link_down(hw, port);
  487. return;
  488. }
  489. if (skge->autoneg == AUTONEG_ENABLE) {
  490. u16 lpa, aux;
  491. if (!(status & PHY_ST_AN_OVER))
  492. return;
  493. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  494. if (lpa & PHY_B_AN_RF) {
  495. DBG(PFX "%s: remote fault\n",
  496. dev->name);
  497. return;
  498. }
  499. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  500. /* Check Duplex mismatch */
  501. switch (aux & PHY_B_AS_AN_RES_MSK) {
  502. case PHY_B_RES_1000FD:
  503. skge->duplex = DUPLEX_FULL;
  504. break;
  505. case PHY_B_RES_1000HD:
  506. skge->duplex = DUPLEX_HALF;
  507. break;
  508. default:
  509. DBG(PFX "%s: duplex mismatch\n",
  510. dev->name);
  511. return;
  512. }
  513. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  514. switch (aux & PHY_B_AS_PAUSE_MSK) {
  515. case PHY_B_AS_PAUSE_MSK:
  516. skge->flow_status = FLOW_STAT_SYMMETRIC;
  517. break;
  518. case PHY_B_AS_PRR:
  519. skge->flow_status = FLOW_STAT_REM_SEND;
  520. break;
  521. case PHY_B_AS_PRT:
  522. skge->flow_status = FLOW_STAT_LOC_SEND;
  523. break;
  524. default:
  525. skge->flow_status = FLOW_STAT_NONE;
  526. }
  527. skge->speed = SPEED_1000;
  528. }
  529. if (!netdev_link_ok(dev))
  530. genesis_link_up(skge);
  531. }
  532. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  533. * Phy on for 100 or 10Mbit operation
  534. */
  535. static void bcom_phy_init(struct skge_port *skge)
  536. {
  537. struct skge_hw *hw = skge->hw;
  538. int port = skge->port;
  539. unsigned int i;
  540. u16 id1, r, ext, ctl;
  541. /* magic workaround patterns for Broadcom */
  542. static const struct {
  543. u16 reg;
  544. u16 val;
  545. } A1hack[] = {
  546. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  547. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  548. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  549. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  550. }, C0hack[] = {
  551. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  552. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  553. };
  554. /* read Id from external PHY (all have the same address) */
  555. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  556. /* Optimize MDIO transfer by suppressing preamble. */
  557. r = xm_read16(hw, port, XM_MMU_CMD);
  558. r |= XM_MMU_NO_PRE;
  559. xm_write16(hw, port, XM_MMU_CMD,r);
  560. switch (id1) {
  561. case PHY_BCOM_ID1_C0:
  562. /*
  563. * Workaround BCOM Errata for the C0 type.
  564. * Write magic patterns to reserved registers.
  565. */
  566. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  567. xm_phy_write(hw, port,
  568. C0hack[i].reg, C0hack[i].val);
  569. break;
  570. case PHY_BCOM_ID1_A1:
  571. /*
  572. * Workaround BCOM Errata for the A1 type.
  573. * Write magic patterns to reserved registers.
  574. */
  575. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  576. xm_phy_write(hw, port,
  577. A1hack[i].reg, A1hack[i].val);
  578. break;
  579. }
  580. /*
  581. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  582. * Disable Power Management after reset.
  583. */
  584. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  585. r |= PHY_B_AC_DIS_PM;
  586. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  587. /* Dummy read */
  588. xm_read16(hw, port, XM_ISRC);
  589. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  590. ctl = PHY_CT_SP1000; /* always 1000mbit */
  591. if (skge->autoneg == AUTONEG_ENABLE) {
  592. /*
  593. * Workaround BCOM Errata #1 for the C5 type.
  594. * 1000Base-T Link Acquisition Failure in Slave Mode
  595. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  596. */
  597. u16 adv = PHY_B_1000C_RD;
  598. if (skge->advertising & ADVERTISED_1000baseT_Half)
  599. adv |= PHY_B_1000C_AHD;
  600. if (skge->advertising & ADVERTISED_1000baseT_Full)
  601. adv |= PHY_B_1000C_AFD;
  602. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  603. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  604. } else {
  605. if (skge->duplex == DUPLEX_FULL)
  606. ctl |= PHY_CT_DUP_MD;
  607. /* Force to slave */
  608. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  609. }
  610. /* Set autonegotiation pause parameters */
  611. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  612. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  613. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  614. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  615. /* Use link status change interrupt */
  616. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  617. }
  618. static void xm_phy_init(struct skge_port *skge)
  619. {
  620. struct skge_hw *hw = skge->hw;
  621. int port = skge->port;
  622. u16 ctrl = 0;
  623. if (skge->autoneg == AUTONEG_ENABLE) {
  624. if (skge->advertising & ADVERTISED_1000baseT_Half)
  625. ctrl |= PHY_X_AN_HD;
  626. if (skge->advertising & ADVERTISED_1000baseT_Full)
  627. ctrl |= PHY_X_AN_FD;
  628. ctrl |= fiber_pause_map[skge->flow_control];
  629. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  630. /* Restart Auto-negotiation */
  631. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  632. } else {
  633. /* Set DuplexMode in Config register */
  634. if (skge->duplex == DUPLEX_FULL)
  635. ctrl |= PHY_CT_DUP_MD;
  636. /*
  637. * Do NOT enable Auto-negotiation here. This would hold
  638. * the link down because no IDLEs are transmitted
  639. */
  640. }
  641. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  642. /* Poll PHY for status changes */
  643. skge->use_xm_link_timer = 1;
  644. }
  645. static int xm_check_link(struct net_device *dev)
  646. {
  647. struct skge_port *skge = netdev_priv(dev);
  648. struct skge_hw *hw = skge->hw;
  649. int port = skge->port;
  650. u16 status;
  651. /* read twice because of latch */
  652. xm_phy_read(hw, port, PHY_XMAC_STAT);
  653. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  654. if ((status & PHY_ST_LSYNC) == 0) {
  655. xm_link_down(hw, port);
  656. return 0;
  657. }
  658. if (skge->autoneg == AUTONEG_ENABLE) {
  659. u16 lpa, res;
  660. if (!(status & PHY_ST_AN_OVER))
  661. return 0;
  662. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  663. if (lpa & PHY_B_AN_RF) {
  664. DBG(PFX "%s: remote fault\n",
  665. dev->name);
  666. return 0;
  667. }
  668. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  669. /* Check Duplex mismatch */
  670. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  671. case PHY_X_RS_FD:
  672. skge->duplex = DUPLEX_FULL;
  673. break;
  674. case PHY_X_RS_HD:
  675. skge->duplex = DUPLEX_HALF;
  676. break;
  677. default:
  678. DBG(PFX "%s: duplex mismatch\n",
  679. dev->name);
  680. return 0;
  681. }
  682. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  683. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  684. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  685. (lpa & PHY_X_P_SYM_MD))
  686. skge->flow_status = FLOW_STAT_SYMMETRIC;
  687. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  688. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  689. /* Enable PAUSE receive, disable PAUSE transmit */
  690. skge->flow_status = FLOW_STAT_REM_SEND;
  691. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  692. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  693. /* Disable PAUSE receive, enable PAUSE transmit */
  694. skge->flow_status = FLOW_STAT_LOC_SEND;
  695. else
  696. skge->flow_status = FLOW_STAT_NONE;
  697. skge->speed = SPEED_1000;
  698. }
  699. if (!netdev_link_ok(dev))
  700. genesis_link_up(skge);
  701. return 1;
  702. }
  703. /* Poll to check for link coming up.
  704. *
  705. * Since internal PHY is wired to a level triggered pin, can't
  706. * get an interrupt when carrier is detected, need to poll for
  707. * link coming up.
  708. */
  709. static void xm_link_timer(struct skge_port *skge)
  710. {
  711. struct net_device *dev = skge->netdev;
  712. struct skge_hw *hw = skge->hw;
  713. int port = skge->port;
  714. int i;
  715. /*
  716. * Verify that the link by checking GPIO register three times.
  717. * This pin has the signal from the link_sync pin connected to it.
  718. */
  719. for (i = 0; i < 3; i++) {
  720. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  721. return;
  722. }
  723. /* Re-enable interrupt to detect link down */
  724. if (xm_check_link(dev)) {
  725. u16 msk = xm_read16(hw, port, XM_IMSK);
  726. msk &= ~XM_IS_INP_ASS;
  727. xm_write16(hw, port, XM_IMSK, msk);
  728. xm_read16(hw, port, XM_ISRC);
  729. }
  730. }
  731. static void genesis_mac_init(struct skge_hw *hw, int port)
  732. {
  733. struct net_device *dev = hw->dev[port];
  734. struct skge_port *skge = netdev_priv(dev);
  735. int i;
  736. u32 r;
  737. const u8 zero[6] = { 0 };
  738. for (i = 0; i < 10; i++) {
  739. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  740. MFF_SET_MAC_RST);
  741. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  742. goto reset_ok;
  743. udelay(1);
  744. }
  745. DBG(PFX "%s: genesis reset failed\n", dev->name);
  746. reset_ok:
  747. /* Unreset the XMAC. */
  748. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  749. /*
  750. * Perform additional initialization for external PHYs,
  751. * namely for the 1000baseTX cards that use the XMAC's
  752. * GMII mode.
  753. */
  754. if (hw->phy_type != SK_PHY_XMAC) {
  755. /* Take external Phy out of reset */
  756. r = skge_read32(hw, B2_GP_IO);
  757. if (port == 0)
  758. r |= GP_DIR_0|GP_IO_0;
  759. else
  760. r |= GP_DIR_2|GP_IO_2;
  761. skge_write32(hw, B2_GP_IO, r);
  762. /* Enable GMII interface */
  763. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  764. }
  765. switch(hw->phy_type) {
  766. case SK_PHY_XMAC:
  767. xm_phy_init(skge);
  768. break;
  769. case SK_PHY_BCOM:
  770. bcom_phy_init(skge);
  771. bcom_check_link(hw, port);
  772. }
  773. /* Set Station Address */
  774. xm_outaddr(hw, port, XM_SA, dev->ll_addr);
  775. /* We don't use match addresses so clear */
  776. for (i = 1; i < 16; i++)
  777. xm_outaddr(hw, port, XM_EXM(i), zero);
  778. /* Clear MIB counters */
  779. xm_write16(hw, port, XM_STAT_CMD,
  780. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  781. /* Clear two times according to Errata #3 */
  782. xm_write16(hw, port, XM_STAT_CMD,
  783. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  784. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  785. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  786. /* We don't need the FCS appended to the packet. */
  787. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  788. if (skge->duplex == DUPLEX_HALF) {
  789. /*
  790. * If in manual half duplex mode the other side might be in
  791. * full duplex mode, so ignore if a carrier extension is not seen
  792. * on frames received
  793. */
  794. r |= XM_RX_DIS_CEXT;
  795. }
  796. xm_write16(hw, port, XM_RX_CMD, r);
  797. /* We want short frames padded to 60 bytes. */
  798. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  799. xm_write16(hw, port, XM_TX_THR, 512);
  800. /*
  801. * Enable the reception of all error frames. This is is
  802. * a necessary evil due to the design of the XMAC. The
  803. * XMAC's receive FIFO is only 8K in size, however jumbo
  804. * frames can be up to 9000 bytes in length. When bad
  805. * frame filtering is enabled, the XMAC's RX FIFO operates
  806. * in 'store and forward' mode. For this to work, the
  807. * entire frame has to fit into the FIFO, but that means
  808. * that jumbo frames larger than 8192 bytes will be
  809. * truncated. Disabling all bad frame filtering causes
  810. * the RX FIFO to operate in streaming mode, in which
  811. * case the XMAC will start transferring frames out of the
  812. * RX FIFO as soon as the FIFO threshold is reached.
  813. */
  814. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  815. /*
  816. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  817. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  818. * and 'Octets Rx OK Hi Cnt Ov'.
  819. */
  820. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  821. /*
  822. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  823. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  824. * and 'Octets Tx OK Hi Cnt Ov'.
  825. */
  826. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  827. /* Configure MAC arbiter */
  828. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  829. /* configure timeout values */
  830. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  831. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  832. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  833. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  834. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  835. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  836. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  837. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  838. /* Configure Rx MAC FIFO */
  839. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  840. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  841. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  842. /* Configure Tx MAC FIFO */
  843. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  844. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  845. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  846. /* enable timeout timers */
  847. skge_write16(hw, B3_PA_CTRL,
  848. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  849. }
  850. static void genesis_stop(struct skge_port *skge)
  851. {
  852. struct skge_hw *hw = skge->hw;
  853. int port = skge->port;
  854. unsigned retries = 1000;
  855. u16 cmd;
  856. /* Disable Tx and Rx */
  857. cmd = xm_read16(hw, port, XM_MMU_CMD);
  858. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  859. xm_write16(hw, port, XM_MMU_CMD, cmd);
  860. genesis_reset(hw, port);
  861. /* Clear Tx packet arbiter timeout IRQ */
  862. skge_write16(hw, B3_PA_CTRL,
  863. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  864. /* Reset the MAC */
  865. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  866. do {
  867. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  868. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  869. break;
  870. } while (--retries > 0);
  871. /* For external PHYs there must be special handling */
  872. if (hw->phy_type != SK_PHY_XMAC) {
  873. u32 reg = skge_read32(hw, B2_GP_IO);
  874. if (port == 0) {
  875. reg |= GP_DIR_0;
  876. reg &= ~GP_IO_0;
  877. } else {
  878. reg |= GP_DIR_2;
  879. reg &= ~GP_IO_2;
  880. }
  881. skge_write32(hw, B2_GP_IO, reg);
  882. skge_read32(hw, B2_GP_IO);
  883. }
  884. xm_write16(hw, port, XM_MMU_CMD,
  885. xm_read16(hw, port, XM_MMU_CMD)
  886. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  887. xm_read16(hw, port, XM_MMU_CMD);
  888. }
  889. static void genesis_link_up(struct skge_port *skge)
  890. {
  891. struct skge_hw *hw = skge->hw;
  892. int port = skge->port;
  893. u16 cmd, msk;
  894. u32 mode;
  895. cmd = xm_read16(hw, port, XM_MMU_CMD);
  896. /*
  897. * enabling pause frame reception is required for 1000BT
  898. * because the XMAC is not reset if the link is going down
  899. */
  900. if (skge->flow_status == FLOW_STAT_NONE ||
  901. skge->flow_status == FLOW_STAT_LOC_SEND)
  902. /* Disable Pause Frame Reception */
  903. cmd |= XM_MMU_IGN_PF;
  904. else
  905. /* Enable Pause Frame Reception */
  906. cmd &= ~XM_MMU_IGN_PF;
  907. xm_write16(hw, port, XM_MMU_CMD, cmd);
  908. mode = xm_read32(hw, port, XM_MODE);
  909. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  910. skge->flow_status == FLOW_STAT_LOC_SEND) {
  911. /*
  912. * Configure Pause Frame Generation
  913. * Use internal and external Pause Frame Generation.
  914. * Sending pause frames is edge triggered.
  915. * Send a Pause frame with the maximum pause time if
  916. * internal oder external FIFO full condition occurs.
  917. * Send a zero pause time frame to re-start transmission.
  918. */
  919. /* XM_PAUSE_DA = '010000C28001' (default) */
  920. /* XM_MAC_PTIME = 0xffff (maximum) */
  921. /* remember this value is defined in big endian (!) */
  922. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  923. mode |= XM_PAUSE_MODE;
  924. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  925. } else {
  926. /*
  927. * disable pause frame generation is required for 1000BT
  928. * because the XMAC is not reset if the link is going down
  929. */
  930. /* Disable Pause Mode in Mode Register */
  931. mode &= ~XM_PAUSE_MODE;
  932. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  933. }
  934. xm_write32(hw, port, XM_MODE, mode);
  935. /* Turn on detection of Tx underrun */
  936. msk = xm_read16(hw, port, XM_IMSK);
  937. msk &= ~XM_IS_TXF_UR;
  938. xm_write16(hw, port, XM_IMSK, msk);
  939. xm_read16(hw, port, XM_ISRC);
  940. /* get MMU Command Reg. */
  941. cmd = xm_read16(hw, port, XM_MMU_CMD);
  942. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  943. cmd |= XM_MMU_GMII_FD;
  944. /*
  945. * Workaround BCOM Errata (#10523) for all BCom Phys
  946. * Enable Power Management after link up
  947. */
  948. if (hw->phy_type == SK_PHY_BCOM) {
  949. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  950. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  951. & ~PHY_B_AC_DIS_PM);
  952. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  953. }
  954. /* enable Rx/Tx */
  955. xm_write16(hw, port, XM_MMU_CMD,
  956. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  957. skge_link_up(skge);
  958. }
  959. static inline void bcom_phy_intr(struct skge_port *skge)
  960. {
  961. struct skge_hw *hw = skge->hw;
  962. int port = skge->port;
  963. u16 isrc;
  964. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  965. DBGIO(PFX "%s: phy interrupt status 0x%x\n",
  966. skge->netdev->name, isrc);
  967. if (isrc & PHY_B_IS_PSE)
  968. DBG(PFX "%s: uncorrectable pair swap error\n",
  969. hw->dev[port]->name);
  970. /* Workaround BCom Errata:
  971. * enable and disable loopback mode if "NO HCD" occurs.
  972. */
  973. if (isrc & PHY_B_IS_NO_HDCL) {
  974. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  975. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  976. ctrl | PHY_CT_LOOP);
  977. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  978. ctrl & ~PHY_CT_LOOP);
  979. }
  980. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  981. bcom_check_link(hw, port);
  982. }
  983. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  984. {
  985. int i;
  986. gma_write16(hw, port, GM_SMI_DATA, val);
  987. gma_write16(hw, port, GM_SMI_CTRL,
  988. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  989. for (i = 0; i < PHY_RETRIES; i++) {
  990. udelay(1);
  991. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  992. return 0;
  993. }
  994. DBG(PFX "%s: phy write timeout port %x reg %x val %x\n",
  995. hw->dev[port]->name,
  996. port, reg, val);
  997. return -EIO;
  998. }
  999. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1000. {
  1001. int i;
  1002. gma_write16(hw, port, GM_SMI_CTRL,
  1003. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1004. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1005. for (i = 0; i < PHY_RETRIES; i++) {
  1006. udelay(1);
  1007. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1008. goto ready;
  1009. }
  1010. return -ETIMEDOUT;
  1011. ready:
  1012. *val = gma_read16(hw, port, GM_SMI_DATA);
  1013. return 0;
  1014. }
  1015. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1016. {
  1017. u16 v = 0;
  1018. if (__gm_phy_read(hw, port, reg, &v))
  1019. DBG(PFX "%s: phy read timeout port %x reg %x val %x\n",
  1020. hw->dev[port]->name,
  1021. port, reg, v);
  1022. return v;
  1023. }
  1024. /* Marvell Phy Initialization */
  1025. static void yukon_init(struct skge_hw *hw, int port)
  1026. {
  1027. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1028. u16 ctrl, ct1000, adv;
  1029. if (skge->autoneg == AUTONEG_ENABLE) {
  1030. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1031. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1032. PHY_M_EC_MAC_S_MSK);
  1033. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1034. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1035. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1036. }
  1037. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1038. if (skge->autoneg == AUTONEG_DISABLE)
  1039. ctrl &= ~PHY_CT_ANE;
  1040. ctrl |= PHY_CT_RESET;
  1041. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1042. ctrl = 0;
  1043. ct1000 = 0;
  1044. adv = PHY_AN_CSMA;
  1045. if (skge->autoneg == AUTONEG_ENABLE) {
  1046. if (hw->copper) {
  1047. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1048. ct1000 |= PHY_M_1000C_AFD;
  1049. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1050. ct1000 |= PHY_M_1000C_AHD;
  1051. if (skge->advertising & ADVERTISED_100baseT_Full)
  1052. adv |= PHY_M_AN_100_FD;
  1053. if (skge->advertising & ADVERTISED_100baseT_Half)
  1054. adv |= PHY_M_AN_100_HD;
  1055. if (skge->advertising & ADVERTISED_10baseT_Full)
  1056. adv |= PHY_M_AN_10_FD;
  1057. if (skge->advertising & ADVERTISED_10baseT_Half)
  1058. adv |= PHY_M_AN_10_HD;
  1059. /* Set Flow-control capabilities */
  1060. adv |= phy_pause_map[skge->flow_control];
  1061. } else {
  1062. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1063. adv |= PHY_M_AN_1000X_AFD;
  1064. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1065. adv |= PHY_M_AN_1000X_AHD;
  1066. adv |= fiber_pause_map[skge->flow_control];
  1067. }
  1068. /* Restart Auto-negotiation */
  1069. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1070. } else {
  1071. /* forced speed/duplex settings */
  1072. ct1000 = PHY_M_1000C_MSE;
  1073. if (skge->duplex == DUPLEX_FULL)
  1074. ctrl |= PHY_CT_DUP_MD;
  1075. switch (skge->speed) {
  1076. case SPEED_1000:
  1077. ctrl |= PHY_CT_SP1000;
  1078. break;
  1079. case SPEED_100:
  1080. ctrl |= PHY_CT_SP100;
  1081. break;
  1082. }
  1083. ctrl |= PHY_CT_RESET;
  1084. }
  1085. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1086. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1087. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1088. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1089. if (skge->autoneg == AUTONEG_ENABLE)
  1090. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1091. else
  1092. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1093. }
  1094. static void yukon_reset(struct skge_hw *hw, int port)
  1095. {
  1096. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1097. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1098. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1099. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1100. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1101. gma_write16(hw, port, GM_RX_CTRL,
  1102. gma_read16(hw, port, GM_RX_CTRL)
  1103. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1104. }
  1105. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1106. static int is_yukon_lite_a0(struct skge_hw *hw)
  1107. {
  1108. u32 reg;
  1109. int ret;
  1110. if (hw->chip_id != CHIP_ID_YUKON)
  1111. return 0;
  1112. reg = skge_read32(hw, B2_FAR);
  1113. skge_write8(hw, B2_FAR + 3, 0xff);
  1114. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1115. skge_write32(hw, B2_FAR, reg);
  1116. return ret;
  1117. }
  1118. static void yukon_mac_init(struct skge_hw *hw, int port)
  1119. {
  1120. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1121. int i;
  1122. u32 reg;
  1123. const u8 *addr = hw->dev[port]->ll_addr;
  1124. /* WA code for COMA mode -- set PHY reset */
  1125. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1126. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1127. reg = skge_read32(hw, B2_GP_IO);
  1128. reg |= GP_DIR_9 | GP_IO_9;
  1129. skge_write32(hw, B2_GP_IO, reg);
  1130. }
  1131. /* hard reset */
  1132. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1133. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1134. /* WA code for COMA mode -- clear PHY reset */
  1135. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1136. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1137. reg = skge_read32(hw, B2_GP_IO);
  1138. reg |= GP_DIR_9;
  1139. reg &= ~GP_IO_9;
  1140. skge_write32(hw, B2_GP_IO, reg);
  1141. }
  1142. /* Set hardware config mode */
  1143. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1144. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1145. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1146. /* Clear GMC reset */
  1147. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1148. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1149. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1150. if (skge->autoneg == AUTONEG_DISABLE) {
  1151. reg = GM_GPCR_AU_ALL_DIS;
  1152. gma_write16(hw, port, GM_GP_CTRL,
  1153. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1154. switch (skge->speed) {
  1155. case SPEED_1000:
  1156. reg &= ~GM_GPCR_SPEED_100;
  1157. reg |= GM_GPCR_SPEED_1000;
  1158. break;
  1159. case SPEED_100:
  1160. reg &= ~GM_GPCR_SPEED_1000;
  1161. reg |= GM_GPCR_SPEED_100;
  1162. break;
  1163. case SPEED_10:
  1164. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1165. break;
  1166. }
  1167. if (skge->duplex == DUPLEX_FULL)
  1168. reg |= GM_GPCR_DUP_FULL;
  1169. } else
  1170. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1171. switch (skge->flow_control) {
  1172. case FLOW_MODE_NONE:
  1173. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1174. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1175. break;
  1176. case FLOW_MODE_LOC_SEND:
  1177. /* disable Rx flow-control */
  1178. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1179. break;
  1180. case FLOW_MODE_SYMMETRIC:
  1181. case FLOW_MODE_SYM_OR_REM:
  1182. /* enable Tx & Rx flow-control */
  1183. break;
  1184. }
  1185. gma_write16(hw, port, GM_GP_CTRL, reg);
  1186. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1187. yukon_init(hw, port);
  1188. /* MIB clear */
  1189. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1190. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1191. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1192. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1193. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1194. /* transmit control */
  1195. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1196. /* receive control reg: unicast + multicast + no FCS */
  1197. gma_write16(hw, port, GM_RX_CTRL,
  1198. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1199. /* transmit flow control */
  1200. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1201. /* transmit parameter */
  1202. gma_write16(hw, port, GM_TX_PARAM,
  1203. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1204. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1205. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1206. /* configure the Serial Mode Register */
  1207. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1208. | GM_SMOD_VLAN_ENA
  1209. | IPG_DATA_VAL(IPG_DATA_DEF);
  1210. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1211. /* physical address: used for pause frames */
  1212. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1213. /* virtual address for data */
  1214. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1215. /* enable interrupt mask for counter overflows */
  1216. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1217. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1218. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1219. /* Initialize Mac Fifo */
  1220. /* Configure Rx MAC FIFO */
  1221. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1222. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1223. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1224. if (is_yukon_lite_a0(hw))
  1225. reg &= ~GMF_RX_F_FL_ON;
  1226. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1227. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1228. /*
  1229. * because Pause Packet Truncation in GMAC is not working
  1230. * we have to increase the Flush Threshold to 64 bytes
  1231. * in order to flush pause packets in Rx FIFO on Yukon-1
  1232. */
  1233. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1234. /* Configure Tx MAC FIFO */
  1235. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1236. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1237. }
  1238. /* Go into power down mode */
  1239. static void yukon_suspend(struct skge_hw *hw, int port)
  1240. {
  1241. u16 ctrl;
  1242. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1243. ctrl |= PHY_M_PC_POL_R_DIS;
  1244. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1245. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1246. ctrl |= PHY_CT_RESET;
  1247. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1248. /* switch IEEE compatible power down mode on */
  1249. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1250. ctrl |= PHY_CT_PDOWN;
  1251. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1252. }
  1253. static void yukon_stop(struct skge_port *skge)
  1254. {
  1255. struct skge_hw *hw = skge->hw;
  1256. int port = skge->port;
  1257. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1258. yukon_reset(hw, port);
  1259. gma_write16(hw, port, GM_GP_CTRL,
  1260. gma_read16(hw, port, GM_GP_CTRL)
  1261. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1262. gma_read16(hw, port, GM_GP_CTRL);
  1263. yukon_suspend(hw, port);
  1264. /* set GPHY Control reset */
  1265. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1266. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1267. }
  1268. static u16 yukon_speed(const struct skge_hw *hw __unused, u16 aux)
  1269. {
  1270. switch (aux & PHY_M_PS_SPEED_MSK) {
  1271. case PHY_M_PS_SPEED_1000:
  1272. return SPEED_1000;
  1273. case PHY_M_PS_SPEED_100:
  1274. return SPEED_100;
  1275. default:
  1276. return SPEED_10;
  1277. }
  1278. }
  1279. static void yukon_link_up(struct skge_port *skge)
  1280. {
  1281. struct skge_hw *hw = skge->hw;
  1282. int port = skge->port;
  1283. u16 reg;
  1284. /* Enable Transmit FIFO Underrun */
  1285. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1286. reg = gma_read16(hw, port, GM_GP_CTRL);
  1287. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1288. reg |= GM_GPCR_DUP_FULL;
  1289. /* enable Rx/Tx */
  1290. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1291. gma_write16(hw, port, GM_GP_CTRL, reg);
  1292. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1293. skge_link_up(skge);
  1294. }
  1295. static void yukon_link_down(struct skge_port *skge)
  1296. {
  1297. struct skge_hw *hw = skge->hw;
  1298. int port = skge->port;
  1299. u16 ctrl;
  1300. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1301. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1302. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1303. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1304. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1305. ctrl |= PHY_M_AN_ASP;
  1306. /* restore Asymmetric Pause bit */
  1307. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1308. }
  1309. skge_link_down(skge);
  1310. yukon_init(hw, port);
  1311. }
  1312. static void yukon_phy_intr(struct skge_port *skge)
  1313. {
  1314. struct skge_hw *hw = skge->hw;
  1315. int port = skge->port;
  1316. const char *reason = NULL;
  1317. u16 istatus, phystat;
  1318. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1319. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1320. DBGIO(PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1321. skge->netdev->name, istatus, phystat);
  1322. if (istatus & PHY_M_IS_AN_COMPL) {
  1323. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1324. & PHY_M_AN_RF) {
  1325. reason = "remote fault";
  1326. goto failed;
  1327. }
  1328. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1329. reason = "master/slave fault";
  1330. goto failed;
  1331. }
  1332. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1333. reason = "speed/duplex";
  1334. goto failed;
  1335. }
  1336. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1337. ? DUPLEX_FULL : DUPLEX_HALF;
  1338. skge->speed = yukon_speed(hw, phystat);
  1339. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1340. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1341. case PHY_M_PS_PAUSE_MSK:
  1342. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1343. break;
  1344. case PHY_M_PS_RX_P_EN:
  1345. skge->flow_status = FLOW_STAT_REM_SEND;
  1346. break;
  1347. case PHY_M_PS_TX_P_EN:
  1348. skge->flow_status = FLOW_STAT_LOC_SEND;
  1349. break;
  1350. default:
  1351. skge->flow_status = FLOW_STAT_NONE;
  1352. }
  1353. if (skge->flow_status == FLOW_STAT_NONE ||
  1354. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1355. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1356. else
  1357. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1358. yukon_link_up(skge);
  1359. return;
  1360. }
  1361. if (istatus & PHY_M_IS_LSP_CHANGE)
  1362. skge->speed = yukon_speed(hw, phystat);
  1363. if (istatus & PHY_M_IS_DUP_CHANGE)
  1364. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1365. if (istatus & PHY_M_IS_LST_CHANGE) {
  1366. if (phystat & PHY_M_PS_LINK_UP)
  1367. yukon_link_up(skge);
  1368. else
  1369. yukon_link_down(skge);
  1370. }
  1371. return;
  1372. failed:
  1373. DBG(PFX "%s: autonegotiation failed (%s)\n",
  1374. skge->netdev->name, reason);
  1375. /* XXX restart autonegotiation? */
  1376. }
  1377. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1378. {
  1379. u32 end;
  1380. start /= 8;
  1381. len /= 8;
  1382. end = start + len - 1;
  1383. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1384. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1385. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1386. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1387. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1388. if (q == Q_R1 || q == Q_R2) {
  1389. /* Set thresholds on receive queue's */
  1390. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1391. start + (2*len)/3);
  1392. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1393. start + (len/3));
  1394. } else {
  1395. /* Enable store & forward on Tx queue's because
  1396. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1397. */
  1398. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1399. }
  1400. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1401. }
  1402. /* Setup Bus Memory Interface */
  1403. static void skge_qset(struct skge_port *skge, u16 q,
  1404. const struct skge_element *e)
  1405. {
  1406. struct skge_hw *hw = skge->hw;
  1407. u32 watermark = 0x600;
  1408. u64 base = skge->dma + (e->desc - skge->mem);
  1409. /* optimization to reduce window on 32bit/33mhz */
  1410. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1411. watermark /= 2;
  1412. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1413. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1414. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1415. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1416. }
  1417. void skge_free(struct net_device *dev)
  1418. {
  1419. struct skge_port *skge = netdev_priv(dev);
  1420. free(skge->rx_ring.start);
  1421. skge->rx_ring.start = NULL;
  1422. free(skge->tx_ring.start);
  1423. skge->tx_ring.start = NULL;
  1424. free_dma(skge->mem, RING_SIZE);
  1425. skge->mem = NULL;
  1426. skge->dma = 0;
  1427. }
  1428. static int skge_up(struct net_device *dev)
  1429. {
  1430. struct skge_port *skge = netdev_priv(dev);
  1431. struct skge_hw *hw = skge->hw;
  1432. int port = skge->port;
  1433. u32 chunk, ram_addr;
  1434. int err;
  1435. DBG2(PFX "%s: enabling interface\n", dev->name);
  1436. skge->mem = malloc_dma(RING_SIZE, SKGE_RING_ALIGN);
  1437. skge->dma = virt_to_bus(skge->mem);
  1438. if (!skge->mem)
  1439. return -ENOMEM;
  1440. memset(skge->mem, 0, RING_SIZE);
  1441. assert(!(skge->dma & 7));
  1442. /* FIXME: find out whether 64 bit gPXE will be loaded > 4GB */
  1443. if ((u64)skge->dma >> 32 != ((u64) skge->dma + RING_SIZE) >> 32) {
  1444. DBG(PFX "pci_alloc_consistent region crosses 4G boundary\n");
  1445. err = -EINVAL;
  1446. goto err;
  1447. }
  1448. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma, NUM_RX_DESC);
  1449. if (err)
  1450. goto err;
  1451. /* this call relies on e->iob and d->control to be 0
  1452. * This is assured by calling memset() on skge->mem and using zalloc()
  1453. * for the skge_element structures.
  1454. */
  1455. skge_rx_refill(dev);
  1456. err = skge_ring_alloc(&skge->tx_ring, skge->mem + RX_RING_SIZE,
  1457. skge->dma + RX_RING_SIZE, NUM_TX_DESC);
  1458. if (err)
  1459. goto err;
  1460. /* Initialize MAC */
  1461. if (hw->chip_id == CHIP_ID_GENESIS)
  1462. genesis_mac_init(hw, port);
  1463. else
  1464. yukon_mac_init(hw, port);
  1465. /* Configure RAMbuffers - equally between ports and tx/rx */
  1466. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  1467. ram_addr = hw->ram_offset + 2 * chunk * port;
  1468. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1469. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1470. assert(!(skge->tx_ring.to_use != skge->tx_ring.to_clean));
  1471. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1472. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1473. /* Start receiver BMU */
  1474. wmb();
  1475. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1476. skge_led(skge, LED_MODE_ON);
  1477. hw->intr_mask |= portmask[port];
  1478. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1479. return 0;
  1480. err:
  1481. skge_rx_clean(skge);
  1482. skge_free(dev);
  1483. return err;
  1484. }
  1485. /* stop receiver */
  1486. static void skge_rx_stop(struct skge_hw *hw, int port)
  1487. {
  1488. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1489. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1490. RB_RST_SET|RB_DIS_OP_MD);
  1491. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1492. }
  1493. static void skge_down(struct net_device *dev)
  1494. {
  1495. struct skge_port *skge = netdev_priv(dev);
  1496. struct skge_hw *hw = skge->hw;
  1497. int port = skge->port;
  1498. if (skge->mem == NULL)
  1499. return;
  1500. DBG2(PFX "%s: disabling interface\n", dev->name);
  1501. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  1502. skge->use_xm_link_timer = 0;
  1503. netdev_link_down(dev);
  1504. hw->intr_mask &= ~portmask[port];
  1505. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1506. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  1507. if (hw->chip_id == CHIP_ID_GENESIS)
  1508. genesis_stop(skge);
  1509. else
  1510. yukon_stop(skge);
  1511. /* Stop transmitter */
  1512. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1513. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1514. RB_RST_SET|RB_DIS_OP_MD);
  1515. /* Disable Force Sync bit and Enable Alloc bit */
  1516. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1517. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1518. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1519. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1520. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1521. /* Reset PCI FIFO */
  1522. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1523. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1524. /* Reset the RAM Buffer async Tx queue */
  1525. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1526. skge_rx_stop(hw, port);
  1527. if (hw->chip_id == CHIP_ID_GENESIS) {
  1528. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1529. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1530. } else {
  1531. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1532. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1533. }
  1534. skge_led(skge, LED_MODE_OFF);
  1535. skge_tx_clean(dev);
  1536. skge_rx_clean(skge);
  1537. skge_free(dev);
  1538. return;
  1539. }
  1540. static inline int skge_tx_avail(const struct skge_ring *ring)
  1541. {
  1542. mb();
  1543. return ((ring->to_clean > ring->to_use) ? 0 : NUM_TX_DESC)
  1544. + (ring->to_clean - ring->to_use) - 1;
  1545. }
  1546. static int skge_xmit_frame(struct net_device *dev, struct io_buffer *iob)
  1547. {
  1548. struct skge_port *skge = netdev_priv(dev);
  1549. struct skge_hw *hw = skge->hw;
  1550. struct skge_element *e;
  1551. struct skge_tx_desc *td;
  1552. u32 control, len;
  1553. u64 map;
  1554. if (skge_tx_avail(&skge->tx_ring) < 1)
  1555. return -EBUSY;
  1556. e = skge->tx_ring.to_use;
  1557. td = e->desc;
  1558. assert(!(td->control & BMU_OWN));
  1559. e->iob = iob;
  1560. len = iob_len(iob);
  1561. map = virt_to_bus(iob->data);
  1562. td->dma_lo = map;
  1563. td->dma_hi = map >> 32;
  1564. control = BMU_CHECK;
  1565. control |= BMU_EOF| BMU_IRQ_EOF;
  1566. /* Make sure all the descriptors written */
  1567. wmb();
  1568. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1569. wmb();
  1570. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1571. DBGIO(PFX "%s: tx queued, slot %td, len %d\n",
  1572. dev->name, e - skge->tx_ring.start, (unsigned int)len);
  1573. skge->tx_ring.to_use = e->next;
  1574. wmb();
  1575. if (skge_tx_avail(&skge->tx_ring) <= 1) {
  1576. DBG(PFX "%s: transmit queue full\n", dev->name);
  1577. }
  1578. return 0;
  1579. }
  1580. /* Free all buffers in transmit ring */
  1581. static void skge_tx_clean(struct net_device *dev)
  1582. {
  1583. struct skge_port *skge = netdev_priv(dev);
  1584. struct skge_element *e;
  1585. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  1586. struct skge_tx_desc *td = e->desc;
  1587. td->control = 0;
  1588. }
  1589. skge->tx_ring.to_clean = e;
  1590. }
  1591. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  1592. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  1593. {
  1594. if (hw->chip_id == CHIP_ID_GENESIS)
  1595. return status >> XMR_FS_LEN_SHIFT;
  1596. else
  1597. return status >> GMR_FS_LEN_SHIFT;
  1598. }
  1599. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  1600. {
  1601. if (hw->chip_id == CHIP_ID_GENESIS)
  1602. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  1603. else
  1604. return (status & GMR_FS_ANY_ERR) ||
  1605. (status & GMR_FS_RX_OK) == 0;
  1606. }
  1607. /* Free all buffers in Tx ring which are no longer owned by device */
  1608. static void skge_tx_done(struct net_device *dev)
  1609. {
  1610. struct skge_port *skge = netdev_priv(dev);
  1611. struct skge_ring *ring = &skge->tx_ring;
  1612. struct skge_element *e;
  1613. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  1614. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  1615. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  1616. if (control & BMU_OWN)
  1617. break;
  1618. netdev_tx_complete(dev, e->iob);
  1619. }
  1620. skge->tx_ring.to_clean = e;
  1621. /* Can run lockless until we need to synchronize to restart queue. */
  1622. mb();
  1623. }
  1624. static void skge_rx_refill(struct net_device *dev)
  1625. {
  1626. struct skge_port *skge = netdev_priv(dev);
  1627. struct skge_ring *ring = &skge->rx_ring;
  1628. struct skge_element *e;
  1629. struct io_buffer *iob;
  1630. struct skge_rx_desc *rd;
  1631. u32 control;
  1632. int i;
  1633. for (i = 0; i < NUM_RX_DESC; i++) {
  1634. e = ring->to_clean;
  1635. rd = e->desc;
  1636. iob = e->iob;
  1637. control = rd->control;
  1638. /* nothing to do here */
  1639. if (iob || (control & BMU_OWN))
  1640. continue;
  1641. DBG2("refilling rx desc %d: ", (ring->to_clean - ring->start));
  1642. iob = alloc_iob(RX_BUF_SIZE);
  1643. if (iob) {
  1644. skge_rx_setup(skge, e, iob, RX_BUF_SIZE);
  1645. } else {
  1646. DBG("descr %d: alloc_iob() failed\n",
  1647. (ring->to_clean - ring->start));
  1648. /* We pass the descriptor to the NIC even if the
  1649. * allocation failed. The card will stop as soon as it
  1650. * encounters a descriptor with the OWN bit set to 0,
  1651. * thus never getting to the next descriptor that might
  1652. * contain a valid io_buffer. This would effectively
  1653. * stall the receive.
  1654. */
  1655. skge_rx_setup(skge, e, NULL, 0);
  1656. }
  1657. ring->to_clean = e->next;
  1658. }
  1659. }
  1660. static void skge_rx_done(struct net_device *dev)
  1661. {
  1662. struct skge_port *skge = netdev_priv(dev);
  1663. struct skge_ring *ring = &skge->rx_ring;
  1664. struct skge_rx_desc *rd;
  1665. struct skge_element *e;
  1666. struct io_buffer *iob;
  1667. u32 control;
  1668. u16 len;
  1669. int i;
  1670. e = ring->to_clean;
  1671. for (i = 0; i < NUM_RX_DESC; i++) {
  1672. iob = e->iob;
  1673. rd = e->desc;
  1674. rmb();
  1675. control = rd->control;
  1676. if ((control & BMU_OWN))
  1677. break;
  1678. if (!iob)
  1679. continue;
  1680. len = control & BMU_BBC;
  1681. /* catch RX errors */
  1682. if ((bad_phy_status(skge->hw, rd->status)) ||
  1683. (phy_length(skge->hw, rd->status) != len)) {
  1684. /* report receive errors */
  1685. DBG("rx error\n");
  1686. netdev_rx_err(dev, iob, -EIO);
  1687. } else {
  1688. DBG2("received packet, len %d\n", len);
  1689. iob_put(iob, len);
  1690. netdev_rx(dev, iob);
  1691. }
  1692. /* io_buffer passed to core, make sure we don't reuse it */
  1693. e->iob = NULL;
  1694. e = e->next;
  1695. }
  1696. skge_rx_refill(dev);
  1697. }
  1698. static void skge_poll(struct net_device *dev)
  1699. {
  1700. struct skge_port *skge = netdev_priv(dev);
  1701. struct skge_hw *hw = skge->hw;
  1702. u32 status;
  1703. /* reading this register ACKs interrupts */
  1704. status = skge_read32(hw, B0_SP_ISRC);
  1705. /* Link event? */
  1706. if (status & IS_EXT_REG) {
  1707. skge_phyirq(hw);
  1708. if (skge->use_xm_link_timer)
  1709. xm_link_timer(skge);
  1710. }
  1711. skge_tx_done(dev);
  1712. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  1713. skge_rx_done(dev);
  1714. /* restart receiver */
  1715. wmb();
  1716. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  1717. skge_read32(hw, B0_IMSK);
  1718. return;
  1719. }
  1720. static void skge_phyirq(struct skge_hw *hw)
  1721. {
  1722. int port;
  1723. for (port = 0; port < hw->ports; port++) {
  1724. struct net_device *dev = hw->dev[port];
  1725. struct skge_port *skge = netdev_priv(dev);
  1726. if (hw->chip_id != CHIP_ID_GENESIS)
  1727. yukon_phy_intr(skge);
  1728. else if (hw->phy_type == SK_PHY_BCOM)
  1729. bcom_phy_intr(skge);
  1730. }
  1731. hw->intr_mask |= IS_EXT_REG;
  1732. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1733. skge_read32(hw, B0_IMSK);
  1734. }
  1735. static const struct {
  1736. u8 id;
  1737. const char *name;
  1738. } skge_chips[] = {
  1739. { CHIP_ID_GENESIS, "Genesis" },
  1740. { CHIP_ID_YUKON, "Yukon" },
  1741. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  1742. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  1743. };
  1744. static const char *skge_board_name(const struct skge_hw *hw)
  1745. {
  1746. unsigned int i;
  1747. static char buf[16];
  1748. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  1749. if (skge_chips[i].id == hw->chip_id)
  1750. return skge_chips[i].name;
  1751. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  1752. return buf;
  1753. }
  1754. /*
  1755. * Setup the board data structure, but don't bring up
  1756. * the port(s)
  1757. */
  1758. static int skge_reset(struct skge_hw *hw)
  1759. {
  1760. u32 reg;
  1761. u16 ctst, pci_status;
  1762. u8 t8, mac_cfg, pmd_type;
  1763. int i;
  1764. ctst = skge_read16(hw, B0_CTST);
  1765. /* do a SW reset */
  1766. skge_write8(hw, B0_CTST, CS_RST_SET);
  1767. skge_write8(hw, B0_CTST, CS_RST_CLR);
  1768. /* clear PCI errors, if any */
  1769. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1770. skge_write8(hw, B2_TST_CTRL2, 0);
  1771. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  1772. pci_write_config_word(hw->pdev, PCI_STATUS,
  1773. pci_status | PCI_STATUS_ERROR_BITS);
  1774. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1775. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  1776. /* restore CLK_RUN bits (for Yukon-Lite) */
  1777. skge_write16(hw, B0_CTST,
  1778. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  1779. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  1780. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  1781. pmd_type = skge_read8(hw, B2_PMD_TYP);
  1782. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  1783. switch (hw->chip_id) {
  1784. case CHIP_ID_GENESIS:
  1785. switch (hw->phy_type) {
  1786. case SK_PHY_XMAC:
  1787. hw->phy_addr = PHY_ADDR_XMAC;
  1788. break;
  1789. case SK_PHY_BCOM:
  1790. hw->phy_addr = PHY_ADDR_BCOM;
  1791. break;
  1792. default:
  1793. DBG(PFX "unsupported phy type 0x%x\n",
  1794. hw->phy_type);
  1795. return -EOPNOTSUPP;
  1796. }
  1797. break;
  1798. case CHIP_ID_YUKON:
  1799. case CHIP_ID_YUKON_LITE:
  1800. case CHIP_ID_YUKON_LP:
  1801. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  1802. hw->copper = 1;
  1803. hw->phy_addr = PHY_ADDR_MARV;
  1804. break;
  1805. default:
  1806. DBG(PFX "unsupported chip type 0x%x\n",
  1807. hw->chip_id);
  1808. return -EOPNOTSUPP;
  1809. }
  1810. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  1811. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  1812. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  1813. /* read the adapters RAM size */
  1814. t8 = skge_read8(hw, B2_E_0);
  1815. if (hw->chip_id == CHIP_ID_GENESIS) {
  1816. if (t8 == 3) {
  1817. /* special case: 4 x 64k x 36, offset = 0x80000 */
  1818. hw->ram_size = 0x100000;
  1819. hw->ram_offset = 0x80000;
  1820. } else
  1821. hw->ram_size = t8 * 512;
  1822. }
  1823. else if (t8 == 0)
  1824. hw->ram_size = 0x20000;
  1825. else
  1826. hw->ram_size = t8 * 4096;
  1827. hw->intr_mask = IS_HW_ERR;
  1828. /* Use PHY IRQ for all but fiber based Genesis board */
  1829. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  1830. hw->intr_mask |= IS_EXT_REG;
  1831. if (hw->chip_id == CHIP_ID_GENESIS)
  1832. genesis_init(hw);
  1833. else {
  1834. /* switch power to VCC (WA for VAUX problem) */
  1835. skge_write8(hw, B0_POWER_CTRL,
  1836. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  1837. /* avoid boards with stuck Hardware error bits */
  1838. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  1839. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  1840. DBG(PFX "stuck hardware sensor bit\n");
  1841. hw->intr_mask &= ~IS_HW_ERR;
  1842. }
  1843. /* Clear PHY COMA */
  1844. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1845. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  1846. reg &= ~PCI_PHY_COMA;
  1847. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  1848. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1849. for (i = 0; i < hw->ports; i++) {
  1850. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1851. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1852. }
  1853. }
  1854. /* turn off hardware timer (unused) */
  1855. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  1856. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1857. skge_write8(hw, B0_LED, LED_STAT_ON);
  1858. /* enable the Tx Arbiters */
  1859. for (i = 0; i < hw->ports; i++)
  1860. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  1861. /* Initialize ram interface */
  1862. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  1863. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  1864. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  1865. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  1866. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  1867. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  1868. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  1869. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  1870. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  1871. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  1872. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  1873. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  1874. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  1875. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  1876. /* Set interrupt moderation for Transmit only
  1877. * Receive interrupts avoided by NAPI
  1878. */
  1879. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  1880. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  1881. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  1882. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1883. for (i = 0; i < hw->ports; i++) {
  1884. if (hw->chip_id == CHIP_ID_GENESIS)
  1885. genesis_reset(hw, i);
  1886. else
  1887. yukon_reset(hw, i);
  1888. }
  1889. return 0;
  1890. }
  1891. /* Initialize network device */
  1892. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  1893. int highmem __unused)
  1894. {
  1895. struct skge_port *skge;
  1896. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  1897. if (!dev) {
  1898. DBG(PFX "etherdev alloc failed\n");
  1899. return NULL;
  1900. }
  1901. dev->dev = &hw->pdev->dev;
  1902. skge = netdev_priv(dev);
  1903. skge->netdev = dev;
  1904. skge->hw = hw;
  1905. /* Auto speed and flow control */
  1906. skge->autoneg = AUTONEG_ENABLE;
  1907. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  1908. skge->duplex = -1;
  1909. skge->speed = -1;
  1910. skge->advertising = skge_supported_modes(hw);
  1911. hw->dev[port] = dev;
  1912. skge->port = port;
  1913. /* read the mac address */
  1914. memcpy(dev->hw_addr, (void *) (hw->regs + B2_MAC_1 + port*8), ETH_ALEN);
  1915. /* device is off until link detection */
  1916. netdev_link_down(dev);
  1917. return dev;
  1918. }
  1919. static void skge_show_addr(struct net_device *dev)
  1920. {
  1921. DBG2(PFX "%s: addr %s\n",
  1922. dev->name, netdev_addr(dev));
  1923. }
  1924. static int skge_probe(struct pci_device *pdev,
  1925. const struct pci_device_id *ent __unused)
  1926. {
  1927. struct net_device *dev, *dev1;
  1928. struct skge_hw *hw;
  1929. int err, using_dac = 0;
  1930. adjust_pci_device(pdev);
  1931. err = -ENOMEM;
  1932. hw = zalloc(sizeof(*hw));
  1933. if (!hw) {
  1934. DBG(PFX "cannot allocate hardware struct\n");
  1935. goto err_out_free_regions;
  1936. }
  1937. hw->pdev = pdev;
  1938. hw->regs = (u32)ioremap(pci_bar_start(pdev, PCI_BASE_ADDRESS_0),
  1939. SKGE_REG_SIZE);
  1940. if (!hw->regs) {
  1941. DBG(PFX "cannot map device registers\n");
  1942. goto err_out_free_hw;
  1943. }
  1944. err = skge_reset(hw);
  1945. if (err)
  1946. goto err_out_iounmap;
  1947. DBG(PFX " addr 0x%llx irq %d chip %s rev %d\n",
  1948. (unsigned long long)pdev->ioaddr, pdev->irq,
  1949. skge_board_name(hw), hw->chip_rev);
  1950. dev = skge_devinit(hw, 0, using_dac);
  1951. if (!dev)
  1952. goto err_out_led_off;
  1953. netdev_init ( dev, &skge_operations );
  1954. err = register_netdev(dev);
  1955. if (err) {
  1956. DBG(PFX "cannot register net device\n");
  1957. goto err_out_free_netdev;
  1958. }
  1959. skge_show_addr(dev);
  1960. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  1961. if (register_netdev(dev1) == 0)
  1962. skge_show_addr(dev1);
  1963. else {
  1964. /* Failure to register second port need not be fatal */
  1965. DBG(PFX "register of second port failed\n");
  1966. hw->dev[1] = NULL;
  1967. netdev_nullify(dev1);
  1968. netdev_put(dev1);
  1969. }
  1970. }
  1971. pci_set_drvdata(pdev, hw);
  1972. return 0;
  1973. err_out_free_netdev:
  1974. netdev_nullify(dev);
  1975. netdev_put(dev);
  1976. err_out_led_off:
  1977. skge_write16(hw, B0_LED, LED_STAT_OFF);
  1978. err_out_iounmap:
  1979. iounmap((void*)hw->regs);
  1980. err_out_free_hw:
  1981. free(hw);
  1982. err_out_free_regions:
  1983. pci_set_drvdata(pdev, NULL);
  1984. return err;
  1985. }
  1986. static void skge_remove(struct pci_device *pdev)
  1987. {
  1988. struct skge_hw *hw = pci_get_drvdata(pdev);
  1989. struct net_device *dev0, *dev1;
  1990. if (!hw)
  1991. return;
  1992. if ((dev1 = hw->dev[1]))
  1993. unregister_netdev(dev1);
  1994. dev0 = hw->dev[0];
  1995. unregister_netdev(dev0);
  1996. hw->intr_mask = 0;
  1997. skge_write32(hw, B0_IMSK, 0);
  1998. skge_read32(hw, B0_IMSK);
  1999. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2000. skge_write8(hw, B0_CTST, CS_RST_SET);
  2001. if (dev1) {
  2002. netdev_nullify(dev1);
  2003. netdev_put(dev1);
  2004. }
  2005. netdev_nullify(dev0);
  2006. netdev_put(dev0);
  2007. iounmap((void*)hw->regs);
  2008. free(hw);
  2009. pci_set_drvdata(pdev, NULL);
  2010. }
  2011. /*
  2012. * Enable or disable IRQ masking.
  2013. *
  2014. * @v netdev Device to control.
  2015. * @v enable Zero to mask off IRQ, non-zero to enable IRQ.
  2016. *
  2017. * This is a gPXE Network Driver API function.
  2018. */
  2019. static void skge_net_irq ( struct net_device *dev, int enable ) {
  2020. struct skge_port *skge = netdev_priv(dev);
  2021. struct skge_hw *hw = skge->hw;
  2022. if (enable)
  2023. hw->intr_mask |= portmask[skge->port];
  2024. else
  2025. hw->intr_mask &= ~portmask[skge->port];
  2026. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2027. }
  2028. struct pci_driver skge_driver __pci_driver = {
  2029. .ids = skge_id_table,
  2030. .id_count = ( sizeof (skge_id_table) / sizeof (skge_id_table[0]) ),
  2031. .probe = skge_probe,
  2032. .remove = skge_remove
  2033. };