[pci] Correct invalid base-class/sub-class/prog-if order in PCIR
PCI Configuration Space contains fields prog-if at the offset 0x09,
sub-class at the offset 0x0a and base-class at the offset 0x0b (it
respects little endian). PCIR structure uses these fields in the same
order.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[romprefix] Avoid unaligned accesses within ROM headers
Ensure that all headers (PCI, UNDI, PnP, iPXE) are aligned to at least
four bytes, so that all accesses to header fields will be correctly
aligned even when reading directly from the expansion ROM BAR.
Reported-by: Peter von Konigsmark <peter@exablaze.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[romprefix] Avoid using PMM-allocated memory in UNDI loader entry point
The UNDI loader entry point is very likely to be called after POST,
when there is a high chance that the PMM-allocated image source area
and decompression area have been reused by something else.
In particular, using an iPXE .iso to test a separate iPXE ROM's UNDI
loader entry point in a qemu VM is likely to crash. SeaBIOS allocates
PMM blocks from close to the top of memory and so these blocks have a
high chance of colliding with the runtime addresses subsequently
chosen by the non-ROM iPXE by scanning the INT 15,e820 memory map.
The standard romprefix.S has no choice about relying on the
PMM-allocated image source area, since it has no other way to retrieve
its compressed payload.
In mromprefix.S, the image source area functions only as an optional
buffer used to avoid repeated reads from the (potentially slow)
expansion ROM BAR by the decompression code. We can therefore always
set %esi=0 when calling install_prealloc from the UNDI loader entry
point, and simply fall back to reading directly from the expansion ROM
BAR.
We can always set %edi=0 when calling install_prealloc from the UNDI
loader entry point. This will behave as though the decompression area
PMM allocation failed, and will therefore use INT 15,88 to find a
temporary decompression area somewhere close to 64MB. This is by no
means guaranteed to be safe from collisions, but it's probably safer
on balance than the PMM-allocated address.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Move most arch/i386 files to arch/x86, and adjust the contents of the
Makefiles and the include/bits/*.h headers to reflect the new
locations.
This patch makes no substantive code changes, as can be seen using a
rename-aware diff (e.g. "git show -M5").
This patch does not make the pcbios platform functional for x86_64; it
merely allows it to compile without errors.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[mromprefix] Report a dummy size at offset 0x02 of .mrom payload
The size of the .mrom payload (the second PCI ROM image) is defined in
its PCI header. The code type for the .mrom payload image is
deliberately set to an invalid value (0xff) to ensure that no BIOS
tries to parse anything in the image other than the PCI header.
Since the code type is not set to 0x00 ("Intel x86, PC-AT
compatible"), bytes 0x02-0x17 should not be interpreted by the BIOS as
being in the standard ISA expansion ROM format. In particular, the
byte at offset 0x02 does not represent the length of the ROM image (in
512-byte blocks).
However, some Dell BIOSes seem to erroneously use the byte at offset
0x02 to determine the length of the .mrom payload when walking the
list of PCI ROM images. Since this byte is currently set to zero,
this can lead to the BIOS getting stuck in an infinite loop during
POST. (This problem may not arise if the .mrom payload is the final
image in the ROM, since the BIOS will then have no reason to attempt
to locate the next image.)
One possible workaround would be to put the real payload size in this
byte, but doing so would constrain the .mrom payload size to 128kB
(see commit 8049a52 ("[mromprefix] Allow for .mrom images larger than
128kB") for more details).
Another possible workaround would be to put the real payload size as a
word in bytes 0x02-0x03 (as is done for EFI ROMs). This would not
constrain the .mrom payload size, but a payload size which happened to
be exactly 128kB would result in a zero value in the byte at offset
0x02 and so could still result in infinite loops on BIOSes with this
bug.
We choose to place a fixed value of 0x01 in the byte at offset 0x02.
This should at least prevent the BIOS from getting stuck in an
infinite loop. (The BIOS may walk into the middle of the .mrom
payload, where it will almost certainly not find a valid {0x55,0xaa}
signature or a valid PCIR header, and will therefore hopefully abort
processing.)
Reported-by: Wissam Shoukair <wissams@mellanox.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[mromprefix] Allow for .mrom images larger than 128kB
The .mrom payload has a code type of 0xff and so the initialisation
length field (single byte at offset 0x02) does not need to be
present. Use only the PCI header's image length field, which allows
the .mrom payload to be up to 32MB in size.
Inspired-by: Swift Geek <swiftgeek@gmail.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[mromprefix] Use PCI length field to obtain length of individual images
mromprefix.S currently uses the initialisation length field (single
byte at offset 0x02) to determine the length of a ROM image within a
multi-image ROM BAR. For PCI ROM images with a code type other than
0, the initialisation length field may not be present.
Fix by using the PCI header's image length field instead.
Inspired-by: Swift Geek <swiftgeek@gmail.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The build process has for a long time assumed that every ROM is a PCI
ROM, and will always include the PCI header and PCI-related
functionality (such as checking the PCI BIOS version, including the
PCI bus:dev.fn address within the ROM product name string, etc.).
While real ISA cards are no longer in use, some virtualisation
environments (notably VirtualBox) have support only for ISA ROMs.
This can cause problems: in particular, VirtualBox will call our
initialisation entry point with random garbage in %ax, which we then
treat as the PCI bus:dev.fn address of the autoboot device: this
generally prevents the default boot sequence from using any network
devices.
Create .isarom and .pcirom prefixes which can be used to explicitly
specify the type of ROM to be created. (Note that the .mrom prefix
always implies a PCI ROM, since the .mrom mechanism relies on
reconfiguring PCI BARs.)
Make .rom a magic prefix which will automatically select the
appropriate PCI or ISA ROM prefix for ROMs defined via a PCI_ROM() or
ISA_ROM() macro. To maintain backwards compatibility, we default to
building a PCI ROM for anything which is not directly derived from a
PCI_ROM() or ISA_ROM() macro (e.g. bin/intel.rom).
Add a selection of targets to "make everything" to ensure that the
(relatively obscure) ISA ROM build process is included within the
per-commit QA checks.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[romprefix] Report failure cause when unable to open payload
Report the cause of the failure when we are unable to open the .mrom
payload. There are two possible failure cases:
- Unable to find a suitable memory BAR to borrow (e.g. if the NIC
doesn't have a memory BAR that is at least as large as the
expansion ROM BAR, or if the memory BAR has been assigned a 64-bit
address which won't fit into the 32-bit expansion ROM BAR). This
will be reported as "BABABABA".
- Unable to find correct ROM image within the BAR. This will be
reported as the address (within the borrowed BAR) at which we first
fail to find a valid 55AA signature.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[romprefix] Allow .mrom image to be placed anywhere within the BAR
A .mrom image currently assumes that it is the first image within the
expansion ROM BAR, which may not be correct when multiple images are
present.
Fix by scanning through the BAR until we locate an image matching our
build ID.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[romprefix] Add a dummy ROM header to cover the .mrom payload
The header of a .mrom image declares its length to be only a few
kilobytes; the remainder is accessed via a sideband mechanism. This
makes it difficult to append an additional ROM image, such as an EFI
ROM.
Add a second, dummy ROM header covering the payload portion of the
.mrom image, allowing consumers to locate any appended ROM images in
the usual way.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Some binutils versions will drag in an object to satisfy the entry
symbol; some won't. Try to cope with this exciting variety of
behaviour by ensuring that all entry symbols are unique.
Remove the explicit inclusion of the prefix object on the linker
command line, since the entry symbol now provides all the information
needed to identify the prefix.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[prefix] Use 16-bit protected mode for access to high memory
Flat real mode works perfectly on real hardware, but seems to cause
problems for some hypervisors. Revert to using 16-bit protected mode
(and returning to real mode with 4GB limits, so as not to break PMM
BIOSes).
Allow the code specific to the .mrom format to continue to assume that
flat real mode works, since this format is specific to real hardware.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[romprefix] Add .mrom format, allowing loading of large ROMs
Add an infrastructure allowing the prefix to provide an open_payload()
method for obtaining out-of-band access to the whole iPXE image. Add
a mechanism within this infrastructure that allows raw access to the
expansion ROM BAR by temporarily borrowing an address from a suitable
memory BAR on the same PCI card.
For cards that have a memory BAR that is at least as large as their
expansion ROM BAR, this allows large iPXE ROMs to be supported even on
systems where PMM fails, or where option ROM space pressure makes it
impossible to use PMM shrinking. The BIOS sees only a stub ROM of
approximately 3kB in size; the remainder (which can be well over 64kB)
is loaded only at the time iPXE is invoked.
As a nice side-effect, an iPXE .mrom image will continue to work even
if its PMM-allocated areas are overwritten between initialisation and
invocation.
Signed-off-by: Michael Brown <mcb30@ipxe.org>