[efi] Provide access to files stored on EFI filesystems
Provide access to local files via the "file://" URI scheme. There are
three syntaxes:
- An opaque URI with a relative path (e.g. "file:script.ipxe").
This will be interpreted as a path relative to the iPXE binary.
- A hierarchical URI with a non-network absolute path
(e.g. "file:/boot/script.ipxe"). This will be interpreted as a
path relative to the root of the filesystem from which the iPXE
binary was loaded.
- A hierarchical URI with a network path in which the authority is a
volume label (e.g. "file://bootdisk/script.ipxe"). This will be
interpreted as a path relative to the root of the filesystem with
the specified volume label.
Note that the potentially desirable shell mappings (e.g. "fs0:" and
"blk0:") are concepts internal to the UEFI shell binary, and do not
seem to be exposed in any way to external executables. The old
EFI_SHELL_PROTOCOL (which did provide access to these mappings) is no
longer installed by current versions of the UEFI shell.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[efi] Expose unused USB devices via EFI_USB_IO_PROTOCOL
Allow the UEFI platform firmware to provide drivers for unrecognised
devices, by exposing our own implementation of EFI_USB_IO_PROTOCOL.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Abstract out the ability to reboot the system to a separate reboot()
function (with platform-specific implementations), add an EFI
implementation, and make the existing "reboot" command available under
EFI.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The EFI_CPU_IO_PROTOCOL is not available on all EFI platforms. In
particular, it is not available under OVMF, as used for qemu.
Since the EFI_CPU_IO_PROTOCOL is an abomination of unnecessary
complexity, banish it and use raw I/O instead.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[rng] Add ANS X9.82 Approved Source of Entropy Input
ANS X9.82 specifies several Approved Sources of Entropy Input (SEI).
One such SEI uses an entropy source as the Source of Entropy Input,
condensing each entropy source output after each GetEntropy call.
This can be implemented relatively cheaply in iPXE and avoids the need
to allocate potentially very large buffers.
(Note that the terms "entropy source" and "Source of Entropy Input"
are not synonyms within the context of ANS X9.82.)
Use the iPXE API mechanism to allow entropy sources to be selected at
compilation time.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[block] Replace gPXE block-device API with an iPXE asynchronous interface
The block device interface used in gPXE predates the invention of even
the old gPXE data-transfer interface, let alone the current iPXE
generic asynchronous interface mechanism. Bring this old code up to
date, with the following benefits:
o Block device commands can be cancelled by the requestor. The INT 13
layer uses this to provide a global timeout on all INT 13 calls,
with the result that an unexpected passive failure mode (such as
an iSCSI target ACKing the request but never sending a response)
will lead to a timeout that gets reported back to the INT 13 user,
rather than simply freezing the system.
o INT 13,00 (reset drive) is now able to reset the underlying block
device. INT 13 users, such as DOS, that use INT 13,00 as a method
for error recovery now have a chance of recovering.
o All block device commands are tagged, with a numerical tag that
will show up in debugging output and in packet captures; this will
allow easier interpretation of bug reports that include both
sources of information.
o The extremely ugly hacks used to generate the boot firmware tables
have been eradicated and replaced with a generic acpi_describe()
method (exploiting the ability of iPXE interfaces to pass through
methods to an underlying interface). The ACPI tables are now
built in a shared data block within .bss16, rather than each
requiring dedicated space in .data16.
o The architecture-independent concept of a SAN device has been
exposed to the iPXE core through the sanboot API, which provides
calls to hook, unhook, boot, and describe SAN devices. This
allows for much more flexible usage patterns (such as hooking an
empty SAN device and then running an OS installer via TFTP).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[efi] Use EFI-native mechanism for accessing SMBIOS table
EFI provides a copy of the SMBIOS table accessible via the EFI system
table, which we should use instead of manually scanning through the
F000:0000 segment.
[efi] Add EFI image format and basic runtime environment
We have EFI APIs for CPU I/O, PCI I/O, timers, console I/O, user
access and user memory allocation.
EFI executables are created using the vanilla GNU toolchain, with the
EXE header handcrafted in assembly and relocations generated by a
custom efilink utility.