[efi] Ensure drivers are disconnected when ExitBootServices() is called
We hook the UEFI ExitBootServices() event and use it to trigger a call
to shutdown_boot(). This does not automatically cause drivers to be
disconnected from their devices, since device enumeration is now
handled by the UEFI core rather than by iPXE. (Under the old and
dubiously compatible device model, iPXE used to perform its own device
enumeration and so the call to shutdown_boot() would indeed have
caused drivers to be disconnected.)
Fix by replicating parts of the dummy "EFI root device" from
efiprefix.c to efidrvprefix.c, so that the call to shutdown_boot()
will call efi_driver_disconnect_all().
Originally-fixed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[efi] Default to releasing network devices for use via SNP
We currently treat network devices as available for use via the SNP
API only if RX queue processing has been frozen. (This is similar in
spirit to the way that RX queue processing is frozen for the network
device currently exposed via the PXE API.)
The default state of a freshly created network device is for the RX
queue to not be frozen, and thus to be unavailable for use via SNP.
This causes problems when devices are added through code paths other
than _efidrv_start() (which explicitly releases devices for use via
SNP).
We don't actually need to freeze RX queue processing, since calls via
the SNP API will always use netdev_poll() rather than net_poll(), and
so will never trigger the RX queue processing code path anyway.
We can therefore simplify the code to use a single global flag to
indicate whether network devices are claimed for use by iPXE or
available for use via SNP. Using a global flag allows the default
state for dynamically created network devices to behave sensibly.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[efi] Disable SNP devices when running iPXE as the application
Some UEFI builds will set up a timer to continuously poll any SNP
devices. This can drain packets from the network device's receive
queue before iPXE gets a chance to process them.
Use netdev_rx_[un]freeze() to explicitly indicate when we expect our
network devices to be driven via the external SNP API (as we do with
the UNDI API on the standard BIOS build), and disable the SNP API
except when receive queue processing is frozen.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
EFI performs its own PCI bus enumeration. Respect this, and start
controlling devices only when instructed to do so by EFI.
As a side benefit, we should now correctly create multiple SNP
instances for multi-port devices.
This should also fix the problem of failing to enumerate devices
because the PCI bridges have not yet been enabled at the time the iPXE
driver is loaded.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The linker chooses to look for _start first and always picks
efidrvprefix.o to satisfy it (probably because it's earlier in the
archive) which causes a multiple definition error when the linker
later has to pick efiprefix.o for other symbols.
Fix by using EFI-specific TGT_LD_FLAGS with an explicit entry point.
Signed-off-by: Piotr Jaroszyński <p.jaroszynski@gmail.com>
Signed-off-by: Joshua Oreman <oremanj@rwcr.net>
Modified-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Access to the gpxe.org and etherboot.org domains and associated
resources has been revoked by the registrant of the domain. Work
around this problem by renaming project from gPXE to iPXE, and
updating URLs to match.
Also update README, LOG and COPYRIGHTS to remove obsolete information.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
elf2efi converts a suitable ELF executable (containing relocation
information, and with appropriate virtual addresses) into an EFI
executable. It is less tightly coupled with the gPXE build process
and, in particular, does not require the use of a hand-crafted PE
image header in efiprefix.S.
elf2efi correctly handles .bss sections, which significantly reduces
the size of the gPXE EFI executable.
EFI_STATUS is defined as an INTN, which maps to UINT32 (i.e. unsigned
int) on i386 and UINT64 (i.e. unsigned long) on x86_64. This would
require a cast each time the error status is printed.
Add efi_strerror() to avoid this ickiness and simultaneously enable
prettier reporting of EFI status codes.
Timers are sometimes required before the call to initialise(), so we
cannot rely on initialise() to set up the timers before use.
Also fix a potential integer overflow issue in generic_currticks_udelay()
Add missing comments to timer code.
Lock system if no suitable timer source is found.
Fix initialisation order so that timers are initialised before code that
needs to use them.
Replace a printf with a DBG in timer_rtdsc.c
Replace a printf in timer.c with assert
Return proper error codes from timer drivers
Signed-off-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Timer subsystem initialization code in core/timer.c
Split the BIOS and RTDSC timer drivers from i386_timer.c
Split arch/i386/firmware/pcbios/bios.c into the RTSDC
timer driver and arch/i386/core/nap.c
Split the headers properly:
include/unistd.h - delay functions to be used by the
gPXE core and drivers.
include/gpxe/timer.h - the fimer subsystem interface
to be used by the timer drivers
and currticks() to be used by
the code gPXE subsystems.
include/latch.h - removed
include/timer.h - scheduled for removal. Some driver
are using currticks, which is
only for core subsystems.
Signed-off-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>