[vmware] Allow settings to be specified in the VMware .vmx file
Allow iPXE settings to be specified in the .vmx file via the VMware
GuestInfo mechanism. For example:
guestinfo.ipxe.filename = "http://boot.ipxe.org/demo/boot.php"
guestinfo.ipxe.dns = "192.168.0.1"
guestinfo.ipxe.net0.ip = "192.168.0.15"
guestinfo.ipxe.net0.netmask = "255.255.255.0"
guestinfo.ipxe.net0.gateway = "192.168.0.1"
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[i386] Use memory address constraints in __bswap_16s() and __bswap_64s()
Minimise code size by forcing the use of memory addresses for
__bswap_16s() and __bswap_64s(). (__bswap_32s() cannot avoid loading the
value into a register.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Fix a strict-aliasing error on certain versions of gcc.
Reported-by: Marko Myllynen <myllynen@redhat.com>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[i386] Optimise byte-swapping functions and provide __bswap_{16,32,64}s()
Use the "bswap" instruction to shrink the size of byte-swapping code,
and provide the in-place variants __bswap_{16,32,64}s.
"bswap" is available only on 486 and later processors. (We already
assume the presence of "cpuid" and "rdtsc", which are available only
on Pentium and later processors.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The RTC-based entropy source uses the nanosecond-scale CPU TSC to
measure the time between two 1kHz interrupts generated by the CMOS
RTC. In a physical machine these clocks are driven from independent
crystals, resulting in some observable clock drift. In a virtual
machine, the CMOS RTC is typically emulated using host-OS
constructions such as SIGALRM.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[rng] Add ANS X9.82 Approved Source of Entropy Input
ANS X9.82 specifies several Approved Sources of Entropy Input (SEI).
One such SEI uses an entropy source as the Source of Entropy Input,
condensing each entropy source output after each GetEntropy call.
This can be implemented relatively cheaply in iPXE and avoids the need
to allocate potentially very large buffers.
(Note that the terms "entropy source" and "Source of Entropy Input"
are not synonyms within the context of ANS X9.82.)
Use the iPXE API mechanism to allow entropy sources to be selected at
compilation time.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow an initrd (such as an embedded script) to be passed to iPXE when
loaded as a .lkrn (or .iso) image. This allows an embedded script to
be varied without recompiling iPXE.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[block] Replace gPXE block-device API with an iPXE asynchronous interface
The block device interface used in gPXE predates the invention of even
the old gPXE data-transfer interface, let alone the current iPXE
generic asynchronous interface mechanism. Bring this old code up to
date, with the following benefits:
o Block device commands can be cancelled by the requestor. The INT 13
layer uses this to provide a global timeout on all INT 13 calls,
with the result that an unexpected passive failure mode (such as
an iSCSI target ACKing the request but never sending a response)
will lead to a timeout that gets reported back to the INT 13 user,
rather than simply freezing the system.
o INT 13,00 (reset drive) is now able to reset the underlying block
device. INT 13 users, such as DOS, that use INT 13,00 as a method
for error recovery now have a chance of recovering.
o All block device commands are tagged, with a numerical tag that
will show up in debugging output and in packet captures; this will
allow easier interpretation of bug reports that include both
sources of information.
o The extremely ugly hacks used to generate the boot firmware tables
have been eradicated and replaced with a generic acpi_describe()
method (exploiting the ability of iPXE interfaces to pass through
methods to an underlying interface). The ACPI tables are now
built in a shared data block within .bss16, rather than each
requiring dedicated space in .data16.
o The architecture-independent concept of a SAN device has been
exposed to the iPXE core through the sanboot API, which provides
calls to hook, unhook, boot, and describe SAN devices. This
allows for much more flexible usage patterns (such as hooking an
empty SAN device and then running an OS installer via TFTP).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Access to the gpxe.org and etherboot.org domains and associated
resources has been revoked by the registrant of the domain. Work
around this problem by renaming project from gPXE to iPXE, and
updating URLs to match.
Also update README, LOG and COPYRIGHTS to remove obsolete information.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[pxe] Separate parent PXE API caller from UNDINET driver
Calling the parent PXE stack (the stack that loaded us, for
undionly.kkpxe) can be useful for more than UNDI calls; for instance,
it lets us get cached DHCP packets to avoid re-DHCP when working with
embedded images.
Signed-off-by: Marty Connor <mdc@etherboot.org>
[comboot] Allow for tail recursion of COMBOOT images
Multi-level menus via COMBOOT rely on the COMBOOT program being able
to exit and invoke a new COMBOOT program (the next menu). This works,
but rapidly (within about five iterations) runs out of space in gPXE's
internal stack, since each new image is executed in a new function
context.
Fix by allowing tail recursion between images; an image can now
specify a replacement image for itself, and image_exec() will perform
the necessary tail recursion.
[x86_64] Add support for compilation as an x86_64 binary
Currently the only supported platform for x86_64 is EFI.
Building an EFI64 gPXE requires a version of gcc that supports
__attribute__((ms_abi)). This currently means a development build of
gcc; the feature should be present when gcc 4.4 is released.
In the meantime; you can grab a suitable gcc tree from
git://git.etherboot.org/scm/people/mcb30/gcc/.git
[efi] Use EFI-native mechanism for accessing SMBIOS table
EFI provides a copy of the SMBIOS table accessible via the EFI system
table, which we should use instead of manually scanning through the
F000:0000 segment.
[i386] Change [u]int32_t to [unsigned] int, rather than [unsigned] long
This brings us in to line with Linux definitions, and also simplifies
adding x86_64 support since both platforms have 2-byte shorts, 4-byte
ints and 8-byte long longs.
[efi] Add EFI image format and basic runtime environment
We have EFI APIs for CPU I/O, PCI I/O, timers, console I/O, user
access and user memory allocation.
EFI executables are created using the vanilla GNU toolchain, with the
EXE header handcrafted in assembly and relocations generated by a
custom efilink utility.
The userptr_t is now the fundamental type that gets used for conversions.
For example, virt_to_phys() is implemented in terms of virt_to_user() and
user_to_phys().
[ELF] Add ability to boot ELF images generated by wraplinux and mkelfImage
Delete ELF as a generic image type. The method for invoking an
ELF-based image (as well as any tables that must be set up to allow it
to boot) will always depend on the specific architecture. core/elf.c
now only provides the elf_load() function, to avoid duplicating
functionality between ELF-based image types.
Add arch/i386/image/elfboot.c, to handle the generic case of 32-bit
x86 ELF images. We don't currently set up any multiboot tables, ELF
notes, etc. This seems to be sufficient for loading kernels generated
using both wraplinux and coreboot's mkelfImage.
Note that while Etherboot 5.4 allowed ELF images to return, we don't.
There is no callback mechanism for the loaded image to shut down gPXE,
which means that we have to shut down before invoking the image. This
means that we lose device state, protection against being trampled on,
etc. It is not safe to continue afterwards.
Replace a printf with a DBG in timer_rtdsc.c
Replace a printf in timer.c with assert
Return proper error codes from timer drivers
Signed-off-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Timer subsystem initialization code in core/timer.c
Split the BIOS and RTDSC timer drivers from i386_timer.c
Split arch/i386/firmware/pcbios/bios.c into the RTSDC
timer driver and arch/i386/core/nap.c
Split the headers properly:
include/unistd.h - delay functions to be used by the
gPXE core and drivers.
include/gpxe/timer.h - the fimer subsystem interface
to be used by the timer drivers
and currticks() to be used by
the code gPXE subsystems.
include/latch.h - removed
include/timer.h - scheduled for removal. Some driver
are using currticks, which is
only for core subsystems.
Signed-off-by: Alexey Zaytsev <alexey.zaytsev@gmail.com>
Add the concept of a "user pointer" (similar to the void __user * in
the kernel), which encapsulates the information needed to refer to an
external buffer. Under normal operation, this can just be a void *
equivalent, but under -DKEEP_IT_REAL it would be a segoff_t equivalent.
Use this concept to avoid the need for bounce buffers in int13.c,
which reduces memory usage and opens up the possibility of using
multi-sector reads.
Extend the block-device API and the SCSI block device implementation
to support multi-sector reads.
Update iscsi.c to use user buffers.
Move the obsolete portions of realmode.h to old_realmode.h.
MS-DOS now boots an order of magnitude faster over iSCSI (~10 seconds
from power-up to C:> prompt in bochs).