At some point in the past few years, binutils became more aggressive
at removing unused symbols. To function as a symbol requirement, a
relocation record must now be in a section marked with @progbits and
must not be in a section which gets discarded during the link (either
via --gc-sections or via /DISCARD/).
Update REQUIRE_SYMBOL() to generate relocation records meeting these
criteria. To minimise the impact upon the final binary size, we use
existing symbols (specified via the REQUIRING_SYMBOL() macro) as the
relocation targets where possible. We use R_386_NONE or R_X86_64_NONE
relocation types to prevent any actual unwanted relocation taking
place. Where no suitable symbol exists for REQUIRING_SYMBOL() (such
as in config.c), the macro PROVIDE_REQUIRING_SYMBOL() can be used to
generate a one-byte-long symbol to act as the relocation target.
If there are versions of binutils for which this approach fails, then
the fallback will probably involve killing off REQUEST_SYMBOL(),
redefining REQUIRE_SYMBOL() to use the current definition of
REQUEST_SYMBOL(), and postprocessing the linked ELF file with
something along the lines of "nm -u | wc -l" to check that there are
no undefined symbols remaining.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[legal] Include full licence text for all GPL2_OR_LATER files
Add the standard warranty disclaimer and Free Software Foundation
address paragraphs to the licence text where these are not currently
present.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[block] Replace gPXE block-device API with an iPXE asynchronous interface
The block device interface used in gPXE predates the invention of even
the old gPXE data-transfer interface, let alone the current iPXE
generic asynchronous interface mechanism. Bring this old code up to
date, with the following benefits:
o Block device commands can be cancelled by the requestor. The INT 13
layer uses this to provide a global timeout on all INT 13 calls,
with the result that an unexpected passive failure mode (such as
an iSCSI target ACKing the request but never sending a response)
will lead to a timeout that gets reported back to the INT 13 user,
rather than simply freezing the system.
o INT 13,00 (reset drive) is now able to reset the underlying block
device. INT 13 users, such as DOS, that use INT 13,00 as a method
for error recovery now have a chance of recovering.
o All block device commands are tagged, with a numerical tag that
will show up in debugging output and in packet captures; this will
allow easier interpretation of bug reports that include both
sources of information.
o The extremely ugly hacks used to generate the boot firmware tables
have been eradicated and replaced with a generic acpi_describe()
method (exploiting the ability of iPXE interfaces to pass through
methods to an underlying interface). The ACPI tables are now
built in a shared data block within .bss16, rather than each
requiring dedicated space in .data16.
o The architecture-independent concept of a SAN device has been
exposed to the iPXE core through the sanboot API, which provides
calls to hook, unhook, boot, and describe SAN devices. This
allows for much more flexible usage patterns (such as hooking an
empty SAN device and then running an OS installer via TFTP).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
For extremely tight space requirements and specific applications, it is
sometimes desirable to create gPXE images that cannot provide the PXE API
functionality to client programs. Add a configuration header option,
PXE_STACK, that can be removed to remove this stack. Also add PXE_MENU
to control the PXE boot menu, which most uses of gPXE do not need.
Signed-off-by: Marty Connor <mdc@etherboot.org>