[settings] Expose memory map via settings mechanism
Allow memory map entries to be read using the syntax
${memmap/<region>.<properties>.<scale>}
where <region> is the index of the memory region, <properties> is a
bitmask where bit 0 represents the start address and bit 1 represents
the length (allowing the end address to be encoded by having both bits
0 and 1 set), and <scale> is the number of bits by which to shift the
result.
This allows for several values of interest to be encoded. For
example:
${memmap/<region>.1.0:hexraw} # 64-bit start address of <region>
${memmap/<region>.2.0:hexraw} # 64-bit length of <region>, in bytes
${memmap/<region>.3.0:hexraw} # 64-bit end address of <region>
${memmap/<region>.2.10:int32} # Length of <region>, in kB
${memmap/<region>.2.20:int32} # Length of <region>, in MB
The numeric encoding is slightly more sophisticated than described
here, allowing a single encoding to cover multiple regions. (See the
source code for details.) The primary use case for this feature is to
provide the total system memory size (in MB) via the "memsize"
predefined setting.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[settings] Expose CPUID instruction via settings mechanism
Allow CPUID values to be read using the syntax
${cpuid/<register>.<function>}
For example, ${cpuid/2.0x80000001} will give the value of %ecx after
calling CPUID with %eax=0x80000001. Values for <register> are encoded
as %eax=0, %ebx=1, %ecx=2, %edx=3.
The numeric encoding is more sophisticated than described above,
allowing for settings such as the CPU model (obtained by calling CPUID
with %eax=0x80000002-0x80000004 inclusive and concatenating the values
returned in %eax:%ebx:%ecx:%edx). See the source code for details.
The "cpuvendor" and "cpumodel" settings provide easy access to these
more complex CPUID settings.
This functionality is intended to complement the "cpuid" command,
which allows for testing individual CPUID feature bits.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[settings] Expose PCI configuration space via settings mechanism
Allow values to be read from PCI configuration space using the syntax
${pci/<busdevfn>.<offset>.<length>}
where <busdevfn> is the bus:dev.fn address of the PCI device
(expressed as a single integer, as returned by ${net0/busloc}),
<offset> is the offset within PCI configuration space, and <length> is
the length within PCI configuration space.
Values are returned in reverse byte order, since PCI configuration
space is little-endian by definition.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Move VMWARE_SETTINGS build configuration option from config/sideband.h
to a new config/settings.h.
Existing instances of config/local/sideband.h will not be affected,
since config.c still #includes config/sideband.h.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Abstract out the ability to reboot the system to a separate reboot()
function (with platform-specific implementations), add an EFI
implementation, and make the existing "reboot" command available under
EFI.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The EFI_CPU_IO_PROTOCOL is not available on all EFI platforms. In
particular, it is not available under OVMF, as used for qemu.
Since the EFI_CPU_IO_PROTOCOL is an abomination of unnecessary
complexity, banish it and use raw I/O instead.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Add "sync" command (loosely based on the Unix "sync"), which will wait
for any pending operations to complete.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The WinCE, a.out and FreeBSD loaders are designed to be #included by
core/loader.c, which no longer exists. These old loaders are not
usable anymore and cause compilation failures when enabled in
config/general.h.
Signed-off-by: Marin Hannache <mareo@mareo.fr>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[vmware] Allow settings to be specified in the VMware .vmx file
Allow iPXE settings to be specified in the .vmx file via the VMware
GuestInfo mechanism. For example:
guestinfo.ipxe.filename = "http://boot.ipxe.org/demo/boot.php"
guestinfo.ipxe.dns = "192.168.0.1"
guestinfo.ipxe.net0.ip = "192.168.0.15"
guestinfo.ipxe.net0.netmask = "255.255.255.0"
guestinfo.ipxe.net0.gateway = "192.168.0.1"
Signed-off-by: Michael Brown <mcb30@ipxe.org>
DOWNLOAD_PROTO_TFTM is now useless as tftm support has been merged
into tftp.c. DOWNLOAD_PROTO_TFTP should be used instead.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
iPXE's support for COMBOOT images is now quite outdated; it has not
kept up to date with changes in the COMBOOT API. The primary use for
COMBOOT seems to be for menuing support. Now that we have native iPXE
script-based menus, COMBOOT support can be gracefully retired (with
immense thanks to Daniel Verkamp for having successfully implemented
such an ambitious feature many years ago).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[console] Add "log message" console usage and an internal syslog() call
Provide an internal syslog() function (unrelated to the syslog
console) which can be used to create log messages with specified
priorities.
The build-time constant LOG_LEVEL can be used to select the minimum
required priority for log messages. Any messages that do not have a
sufficient priority will be ignored (and will be optimised away at
compile-time).
The default LOG_LEVEL is LOG_NONE.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The RTC-based entropy source uses the nanosecond-scale CPU TSC to
measure the time between two 1kHz interrupts generated by the CMOS
RTC. In a physical machine these clocks are driven from independent
crystals, resulting in some observable clock drift. In a virtual
machine, the CMOS RTC is typically emulated using host-OS
constructions such as SIGALRM.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[rng] Add ANS X9.82 Approved Source of Entropy Input
ANS X9.82 specifies several Approved Sources of Entropy Input (SEI).
One such SEI uses an entropy source as the Source of Entropy Input,
condensing each entropy source output after each GetEntropy call.
This can be implemented relatively cheaply in iPXE and avoids the need
to allocate potentially very large buffers.
(Note that the terms "entropy source" and "Source of Entropy Input"
are not synonyms within the context of ANS X9.82.)
Use the iPXE API mechanism to allow entropy sources to be selected at
compilation time.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[romprefix] Do not fall back to hooking INT19 by default
Several BIOSes (including most IBM BIOSes and many virtual machine
BIOSes) do not provide detectable PnP support, but will use the BEV
entry point for a PnP option ROM. On these semi-PnP BIOSes, iPXE will
respond to the absence of detectable PnP support by hooking INT19,
which disrupts the boot order.
BIOSes that genuinely require hooking INT19 seem to be very rare
nowadays. It may therefore be preferable to assume that the absence
of detectable PnP support indicates a semi-PnP BIOS rather than a
non-PnP BIOS.
Change the default behaviour so that INT19 will never be hooked unless
the compile-time option NONPNP_HOOK_INT19 is enabled. Leave the
redundant PnP detection routine in-place to allow for debugging via
the ROM banner line.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[pxe] Remove startpxe and stoppxe commands from default builds
These commands exist primarily for debugging and are not generally
useful, so save 137 bytes by removing them by default.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The Fibre Channel Protocol provides a mechanism for transporting SCSI
commands via a Fibre Channel fabric.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[block] Replace gPXE block-device API with an iPXE asynchronous interface
The block device interface used in gPXE predates the invention of even
the old gPXE data-transfer interface, let alone the current iPXE
generic asynchronous interface mechanism. Bring this old code up to
date, with the following benefits:
o Block device commands can be cancelled by the requestor. The INT 13
layer uses this to provide a global timeout on all INT 13 calls,
with the result that an unexpected passive failure mode (such as
an iSCSI target ACKing the request but never sending a response)
will lead to a timeout that gets reported back to the INT 13 user,
rather than simply freezing the system.
o INT 13,00 (reset drive) is now able to reset the underlying block
device. INT 13 users, such as DOS, that use INT 13,00 as a method
for error recovery now have a chance of recovering.
o All block device commands are tagged, with a numerical tag that
will show up in debugging output and in packet captures; this will
allow easier interpretation of bug reports that include both
sources of information.
o The extremely ugly hacks used to generate the boot firmware tables
have been eradicated and replaced with a generic acpi_describe()
method (exploiting the ability of iPXE interfaces to pass through
methods to an underlying interface). The ACPI tables are now
built in a shared data block within .bss16, rather than each
requiring dedicated space in .data16.
o The architecture-independent concept of a SAN device has been
exposed to the iPXE core through the sanboot API, which provides
calls to hook, unhook, boot, and describe SAN devices. This
allows for much more flexible usage patterns (such as hooking an
empty SAN device and then running an OS installer via TFTP).
Signed-off-by: Michael Brown <mcb30@ipxe.org>