Parse the sense data to extract the reponse code, the sense key, the
additional sense code, and the additional sense code qualifier.
Originally-implemented-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[block] Replace gPXE block-device API with an iPXE asynchronous interface
The block device interface used in gPXE predates the invention of even
the old gPXE data-transfer interface, let alone the current iPXE
generic asynchronous interface mechanism. Bring this old code up to
date, with the following benefits:
o Block device commands can be cancelled by the requestor. The INT 13
layer uses this to provide a global timeout on all INT 13 calls,
with the result that an unexpected passive failure mode (such as
an iSCSI target ACKing the request but never sending a response)
will lead to a timeout that gets reported back to the INT 13 user,
rather than simply freezing the system.
o INT 13,00 (reset drive) is now able to reset the underlying block
device. INT 13 users, such as DOS, that use INT 13,00 as a method
for error recovery now have a chance of recovering.
o All block device commands are tagged, with a numerical tag that
will show up in debugging output and in packet captures; this will
allow easier interpretation of bug reports that include both
sources of information.
o The extremely ugly hacks used to generate the boot firmware tables
have been eradicated and replaced with a generic acpi_describe()
method (exploiting the ability of iPXE interfaces to pass through
methods to an underlying interface). The ACPI tables are now
built in a shared data block within .bss16, rather than each
requiring dedicated space in .data16.
o The architecture-independent concept of a SAN device has been
exposed to the iPXE core through the sanboot API, which provides
calls to hook, unhook, boot, and describe SAN devices. This
allows for much more flexible usage patterns (such as hooking an
empty SAN device and then running an OS installer via TFTP).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[interface] Convert all data-xfer interfaces to generic interfaces
Remove data-xfer as an interface type, and replace data-xfer
interfaces with generic interfaces supporting the data-xfer methods.
Filter interfaces (as used by the TLS layer) are handled using the
generic pass-through interface capability. A side-effect of this is
that deliver_raw() no longer exists as a data-xfer method. (In
practice this doesn't lose any efficiency, since there are no
instances within the current codebase where xfer_deliver_raw() is used
to pass data to an interface supporting the deliver_raw() method.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Standardise on using ref_init() to initialise an embedded reference
count, to match the coding style used by other embedded objects.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Access to the gpxe.org and etherboot.org domains and associated
resources has been revoked by the registrant of the domain. Work
around this problem by renaming project from gPXE to iPXE, and
updating URLs to match.
Also update README, LOG and COPYRIGHTS to remove obsolete information.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
[infiniband] Allow SRP reconnection attempts even after reporting failures
With iSCSI, connection attempts are expensive; it may take many
seconds to determine that a connection will fail. SRP connection
attempts are much less expensive, so we may as well avoid the
"optimisation" of declaring a state of permanent failure after a
certain number of attempts. This allows a gPXE SRP initiator to
resume operations after an arbitrary amount of SRP target downtime.
SRP is the SCSI RDMA Protocol. It allows for a method of SAN booting
whereby the target is responsible for reading and writing data using
Remote DMA directly to the initiator's memory. The software initiator
merely sends and receives SCSI commands; it never has to touch the
actual data.