Select the IPv6 source address and corresponding router (if any) using
a very simplified version of the algorithm from RFC6724:
- Ignore any source address that has a smaller scope than the
destination address. For example, do not use a link-local source
address when sending to a global destination address.
- If we have a source address which is on the same link as the
destination address, then use that source address.
- If we are left with multiple possible source addresses, then choose
the address with the smallest scope. For example, if we are sending
to a site-local destination address and we have both a global source
address and a site-local source address, then use the site-local
source address.
- If we are still left with multiple possible source addresses, then
choose the address with the longest matching prefix.
For the purposes of this algorithm, we treat RFC4193 Unique Local
Addresses as having organisation-local scope. Since we use only
link-local scope for our multicast transmissions, this approximation
should remain valid in all practical situations.
Originally-implemented-by: Thomas Bächler <thomas@archlinux.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Fix an erroneous htonl() in the definition of IN6_IS_ADDR_LINKLOCAL(),
and add self-tests for the IN6_IS_ADDR_xxx() family of macros.
Reported-by: Marin Hannache <git@mareo.fr>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Replace the existing partially-implemented IPv6 stack with a fresh
implementation.
This implementation is not yet complete. The IPv6 transmit and
receive datapaths are functional (including fragment reassembly and
parsing of arbitrary extension headers). NDP neighbour solicitations
and advertisements are supported. ICMPv6 echo is supported.
At present, only link-local addresses may be used, and there is no way
to specify an IPv6 address as part of a URI (either directly or via
a DNS lookup).
Signed-off-by: Michael Brown <mcb30@ipxe.org>