|
@@ -1,611 +0,0 @@
|
1
|
|
-/*
|
2
|
|
- Copyright (C) 2000, Entity Cyber, Inc.
|
3
|
|
-
|
4
|
|
- Authors: Gary Byers (gb@thinguin.org)
|
5
|
|
- Marty Connor (mdc@thinguin.org)
|
6
|
|
- Eric Biederman (ebiederman@lnxi.com)
|
7
|
|
-
|
8
|
|
- This code also derives a lot from arch/i386/boot/setup.S in
|
9
|
|
- the linux kernel.
|
10
|
|
-
|
11
|
|
- This software may be used and distributed according to the terms
|
12
|
|
- of the GNU Public License (GPL), incorporated herein by reference.
|
13
|
|
-
|
14
|
|
- Description:
|
15
|
|
-
|
16
|
|
- This is just a little bit of code and data that can get prepended
|
17
|
|
- to an Etherboot ROM image in order to allow LILO to load the
|
18
|
|
- result as if it were a Linux kernel image.
|
19
|
|
-
|
20
|
|
- A real Linux kernel image consists of a one-sector boot loader
|
21
|
|
- (to load the image from a floppy disk), followed a few sectors
|
22
|
|
- of setup code, followed by the kernel code itself. There's
|
23
|
|
- a table in the first sector (starting at offset 497) that indicates
|
24
|
|
- how many sectors of setup code follow the first sector and which
|
25
|
|
- contains some other parameters that aren't interesting in this
|
26
|
|
- case.
|
27
|
|
-
|
28
|
|
- When LILO loads the sectors that comprise a kernel image, it doesn't
|
29
|
|
- execute the code in the first sector (since that code would try to
|
30
|
|
- load the image from a floppy disk.) The code in the first sector
|
31
|
|
- below doesn't expect to get executed (and prints an error message
|
32
|
|
- if it ever -is- executed.) LILO's only interested in knowing the
|
33
|
|
- number of setup sectors advertised in the table (at offset 497 in
|
34
|
|
- the first sector.)
|
35
|
|
-
|
36
|
|
- Etherboot doesn't require much in the way of setup code.
|
37
|
|
- Historically, the Linux kernel required at least 4 sectors of
|
38
|
|
- setup code. Current versions of LILO look at the byte at
|
39
|
|
- offset 497 in the first sector to indicate how many sectors
|
40
|
|
- of setup code are contained in the image.
|
41
|
|
-
|
42
|
|
- The setup code that is present here does a lot of things
|
43
|
|
- exactly the way the linux kernel does them instead of in
|
44
|
|
- ways more typical of etherboot. Generally this is so
|
45
|
|
- the code can be strongly compatible with the linux kernel.
|
46
|
|
- In addition the general etherboot technique of enabling the a20
|
47
|
|
- after we switch into protected mode does not work if etherboot
|
48
|
|
- is being loaded at 1MB.
|
49
|
|
-*/
|
50
|
|
-
|
51
|
|
- .equ CR0_PE,1
|
52
|
|
-
|
53
|
|
-#ifdef GAS291
|
54
|
|
-#define DATA32 data32;
|
55
|
|
-#define ADDR32 addr32;
|
56
|
|
-#define LJMPI(x) ljmp x
|
57
|
|
-#else
|
58
|
|
-#define DATA32 data32
|
59
|
|
-#define ADDR32 addr32
|
60
|
|
-/* newer GAS295 require #define LJMPI(x) ljmp *x */
|
61
|
|
-#define LJMPI(x) ljmp x
|
62
|
|
-#endif
|
63
|
|
-
|
64
|
|
-/* Simple and small GDT entries for booting only */
|
65
|
|
-#define GDT_ENTRY_BOOT_CS 2
|
66
|
|
-#define GDT_ENTRY_BOOT_DS (GDT_ENTRY_BOOT_CS + 1)
|
67
|
|
-#define __BOOT_CS (GDT_ENTRY_BOOT_CS * 8)
|
68
|
|
-#define __BOOT_DS (GDT_ENTRY_BOOT_DS * 8)
|
69
|
|
-
|
70
|
|
-
|
71
|
|
-#define SETUPSECS 4 /* Minimal nr of setup-sectors */
|
72
|
|
-#define PREFIXSIZE ((SETUPSECS+1)*512)
|
73
|
|
-#define PREFIXPGH (PREFIXSIZE / 16 )
|
74
|
|
-#define BOOTSEG 0x07C0 /* original address of boot-sector */
|
75
|
|
-#define INITSEG 0x9000 /* we move boot here - out of the way */
|
76
|
|
-#define SETUPSEG 0x9020 /* setup starts here */
|
77
|
|
-#define SYSSEG 0x1000 /* system loaded at 0x10000 (65536). */
|
78
|
|
-
|
79
|
|
-#define DELTA_INITSEG (SETUPSEG - INITSEG) /* 0x0020 */
|
80
|
|
-
|
81
|
|
-/* Signature words to ensure LILO loaded us right */
|
82
|
|
-#define SIG1 0xAA55
|
83
|
|
-#define SIG2 0x5A5A
|
84
|
|
-
|
85
|
|
- .text
|
86
|
|
- .code16
|
87
|
|
- .arch i386
|
88
|
|
- .org 0
|
89
|
|
- .section ".prefix", "ax", @progbits
|
90
|
|
-_prefix:
|
91
|
|
-
|
92
|
|
-/*
|
93
|
|
- This is a minimal boot sector. If anyone tries to execute it (e.g., if
|
94
|
|
- a .lkrn file is dd'ed to a floppy), print an error message.
|
95
|
|
-*/
|
96
|
|
-
|
97
|
|
-bootsector:
|
98
|
|
- jmp $BOOTSEG, $go - _prefix /* reload cs:ip to match relocation addr */
|
99
|
|
-go:
|
100
|
|
- movw $0x2000, %di /* 0x2000 is arbitrary value >= length
|
101
|
|
- of bootsect + room for stack */
|
102
|
|
-
|
103
|
|
- movw $BOOTSEG, %ax
|
104
|
|
- movw %ax,%ds
|
105
|
|
- movw %ax,%es
|
106
|
|
-
|
107
|
|
- cli
|
108
|
|
- movw %ax, %ss /* put stack at BOOTSEG:0x2000. */
|
109
|
|
- movw %di,%sp
|
110
|
|
- sti
|
111
|
|
-
|
112
|
|
- movw $why_end-why, %cx
|
113
|
|
- movw $why - _prefix, %si
|
114
|
|
-
|
115
|
|
- movw $0x0007, %bx /* page 0, attribute 7 (normal) */
|
116
|
|
- movb $0x0e, %ah /* write char, tty mode */
|
117
|
|
-prloop:
|
118
|
|
- lodsb
|
119
|
|
- int $0x10
|
120
|
|
- loop prloop
|
121
|
|
-freeze: jmp freeze
|
122
|
|
-
|
123
|
|
-why: .ascii "This image cannot be loaded from a floppy disk.\r\n"
|
124
|
|
-why_end:
|
125
|
|
-
|
126
|
|
-
|
127
|
|
- .org 497
|
128
|
|
-setup_sects:
|
129
|
|
- .byte SETUPSECS
|
130
|
|
-root_flags:
|
131
|
|
- .word 0
|
132
|
|
-syssize:
|
133
|
|
- .word _verbatim_size_pgh - PREFIXPGH
|
134
|
|
-swap_dev:
|
135
|
|
- .word 0
|
136
|
|
-ram_size:
|
137
|
|
- .word 0
|
138
|
|
-vid_mode:
|
139
|
|
- .word 0
|
140
|
|
-root_dev:
|
141
|
|
- .word 0
|
142
|
|
-boot_flag:
|
143
|
|
- .word 0xAA55
|
144
|
|
-
|
145
|
|
-/*
|
146
|
|
- We're now at the beginning of the second sector of the image -
|
147
|
|
- where the setup code goes.
|
148
|
|
-
|
149
|
|
- We don't need to do too much setup for Etherboot.
|
150
|
|
-
|
151
|
|
- This code gets loaded at SETUPSEG:0. It wants to start
|
152
|
|
- executing the Etherboot image that's loaded at SYSSEG:0 and
|
153
|
|
- whose entry point is SYSSEG:0.
|
154
|
|
-*/
|
155
|
|
-setup_code:
|
156
|
|
- jmp trampoline
|
157
|
|
-# This is the setup header, and it must start at %cs:2 (old 0x9020:2)
|
158
|
|
-
|
159
|
|
- .ascii "HdrS" # header signature
|
160
|
|
- .word 0x0203 # header version number (>= 0x0105)
|
161
|
|
- # or else old loadlin-1.5 will fail)
|
162
|
|
-realmode_swtch: .word 0, 0 # default_switch, SETUPSEG
|
163
|
|
-start_sys_seg: .word SYSSEG # low load segment (obsolete)
|
164
|
|
- .word kernel_version - setup_code
|
165
|
|
- # pointing to kernel version string
|
166
|
|
- # above section of header is compatible
|
167
|
|
- # with loadlin-1.5 (header v1.5). Don't
|
168
|
|
- # change it.
|
169
|
|
-
|
170
|
|
-type_of_loader: .byte 0 # = 0, old one (LILO, Loadlin,
|
171
|
|
- # Bootlin, SYSLX, bootsect...)
|
172
|
|
- # See Documentation/i386/boot.txt for
|
173
|
|
- # assigned ids
|
174
|
|
-
|
175
|
|
-# flags, unused bits must be zero (RFU) bit within loadflags
|
176
|
|
-loadflags:
|
177
|
|
-LOADED_HIGH = 1 # If set, the kernel is loaded high
|
178
|
|
-CAN_USE_HEAP = 0x80 # If set, the loader also has set
|
179
|
|
- # heap_end_ptr to tell how much
|
180
|
|
- # space behind setup.S can be used for
|
181
|
|
- # heap purposes.
|
182
|
|
- # Only the loader knows what is free
|
183
|
|
- .byte LOADED_HIGH
|
184
|
|
-
|
185
|
|
-setup_move_size: .word 0x8000 # size to move, when setup is not
|
186
|
|
- # loaded at 0x90000. We will move setup
|
187
|
|
- # to 0x90000 then just before jumping
|
188
|
|
- # into the kernel. However, only the
|
189
|
|
- # loader knows how much data behind
|
190
|
|
- # us also needs to be loaded.
|
191
|
|
-
|
192
|
|
-code32_start: # here loaders can put a different
|
193
|
|
- # start address for 32-bit code.
|
194
|
|
- .long 0x100000 # 0x100000 = default for big kernel
|
195
|
|
-
|
196
|
|
-ramdisk_image: .long 0 # address of loaded ramdisk image
|
197
|
|
- # Here the loader puts the 32-bit
|
198
|
|
- # address where it loaded the image.
|
199
|
|
- # This only will be read by the kernel.
|
200
|
|
-
|
201
|
|
-ramdisk_size: .long 0 # its size in bytes
|
202
|
|
-
|
203
|
|
-bootsect_kludge:
|
204
|
|
- .long 0 # obsolete
|
205
|
|
-
|
206
|
|
-heap_end_ptr: .word 0 # (Header version 0x0201 or later)
|
207
|
|
- # space from here (exclusive) down to
|
208
|
|
- # end of setup code can be used by setup
|
209
|
|
- # for local heap purposes.
|
210
|
|
-
|
211
|
|
-pad1: .word 0
|
212
|
|
-cmd_line_ptr: .long 0 # (Header version 0x0202 or later)
|
213
|
|
- # If nonzero, a 32-bit pointer
|
214
|
|
- # to the kernel command line.
|
215
|
|
- # The command line should be
|
216
|
|
- # located between the start of
|
217
|
|
- # setup and the end of low
|
218
|
|
- # memory (0xa0000), or it may
|
219
|
|
- # get overwritten before it
|
220
|
|
- # gets read. If this field is
|
221
|
|
- # used, there is no longer
|
222
|
|
- # anything magical about the
|
223
|
|
- # 0x90000 segment; the setup
|
224
|
|
- # can be located anywhere in
|
225
|
|
- # low memory 0x10000 or higher.
|
226
|
|
-
|
227
|
|
-ramdisk_max: .long 0 # (Header version 0x0203 or later)
|
228
|
|
- # The highest safe address for
|
229
|
|
- # the contents of an initrd
|
230
|
|
-
|
231
|
|
-trampoline: call start_of_setup
|
232
|
|
-trampoline_end:
|
233
|
|
- .space 1024
|
234
|
|
-# End of setup header #####################################################
|
235
|
|
-
|
236
|
|
-start_of_setup:
|
237
|
|
-# Set %ds = %cs, we know that SETUPSEG = %cs at this point
|
238
|
|
- movw %cs, %ax # aka SETUPSEG
|
239
|
|
- movw %ax, %ds
|
240
|
|
-# Check signature at end of setup
|
241
|
|
- cmpw $SIG1, (setup_sig1 - setup_code)
|
242
|
|
- jne bad_sig
|
243
|
|
-
|
244
|
|
- cmpw $SIG2, (setup_sig2 - setup_code)
|
245
|
|
- jne bad_sig
|
246
|
|
-
|
247
|
|
- jmp good_sig1
|
248
|
|
-
|
249
|
|
-# Routine to print asciiz string at ds:si
|
250
|
|
-prtstr:
|
251
|
|
- lodsb
|
252
|
|
- andb %al, %al
|
253
|
|
- jz fin
|
254
|
|
-
|
255
|
|
- call prtchr
|
256
|
|
- jmp prtstr
|
257
|
|
-
|
258
|
|
-fin: ret
|
259
|
|
-
|
260
|
|
-# Part of above routine, this one just prints ascii al
|
261
|
|
-prtchr: pushw %ax
|
262
|
|
- pushw %cx
|
263
|
|
- movw $7,%bx
|
264
|
|
- movw $0x01, %cx
|
265
|
|
- movb $0x0e, %ah
|
266
|
|
- int $0x10
|
267
|
|
- popw %cx
|
268
|
|
- popw %ax
|
269
|
|
- ret
|
270
|
|
-
|
271
|
|
-no_sig_mess: .string "No setup signature found ..."
|
272
|
|
-
|
273
|
|
-good_sig1:
|
274
|
|
- jmp good_sig
|
275
|
|
-
|
276
|
|
-# We now have to find the rest of the setup code/data
|
277
|
|
-bad_sig:
|
278
|
|
- movw %cs, %ax # SETUPSEG
|
279
|
|
- subw $DELTA_INITSEG, %ax # INITSEG
|
280
|
|
- movw %ax, %ds
|
281
|
|
- xorb %bh, %bh
|
282
|
|
- movb (497), %bl # get setup sect from bootsect
|
283
|
|
- subw $4, %bx # LILO loads 4 sectors of setup
|
284
|
|
- shlw $8, %bx # convert to words (1sect=2^8 words)
|
285
|
|
- movw %bx, %cx
|
286
|
|
- shrw $3, %bx # convert to segment
|
287
|
|
- addw $SYSSEG, %bx
|
288
|
|
- movw %bx, %cs:(start_sys_seg - setup_code)
|
289
|
|
-# Move rest of setup code/data to here
|
290
|
|
- movw $2048, %di # four sectors loaded by LILO
|
291
|
|
- subw %si, %si
|
292
|
|
- pushw %cs
|
293
|
|
- popw %es
|
294
|
|
- movw $SYSSEG, %ax
|
295
|
|
- movw %ax, %ds
|
296
|
|
- rep
|
297
|
|
- movsw
|
298
|
|
- movw %cs, %ax # aka SETUPSEG
|
299
|
|
- movw %ax, %ds
|
300
|
|
- cmpw $SIG1, (setup_sig1 - setup_code)
|
301
|
|
- jne no_sig
|
302
|
|
-
|
303
|
|
- cmpw $SIG2, (setup_sig2 - setup_code)
|
304
|
|
- jne no_sig
|
305
|
|
-
|
306
|
|
- jmp good_sig
|
307
|
|
-
|
308
|
|
-no_sig:
|
309
|
|
- lea (no_sig_mess - setup_code), %si
|
310
|
|
- call prtstr
|
311
|
|
-
|
312
|
|
-no_sig_loop:
|
313
|
|
- hlt
|
314
|
|
- jmp no_sig_loop
|
315
|
|
-
|
316
|
|
-good_sig:
|
317
|
|
- cmpw $0, %cs:(realmode_swtch - setup_code)
|
318
|
|
- jz rmodeswtch_normal
|
319
|
|
-
|
320
|
|
- lcall *%cs:(realmode_swtch - setup_code)
|
321
|
|
- jmp rmodeswtch_end
|
322
|
|
-
|
323
|
|
-rmodeswtch_normal:
|
324
|
|
- pushw %cs
|
325
|
|
- call default_switch
|
326
|
|
-
|
327
|
|
-rmodeswtch_end:
|
328
|
|
-# we get the code32 start address and modify the below 'jmpi'
|
329
|
|
-# (loader may have changed it)
|
330
|
|
- movl %cs:(code32_start - setup_code), %eax
|
331
|
|
- movl %eax, %cs:(code32 - setup_code)
|
332
|
|
-
|
333
|
|
-# then we load the segment descriptors
|
334
|
|
- movw %cs, %ax # aka SETUPSEG
|
335
|
|
- movw %ax, %ds
|
336
|
|
-
|
337
|
|
-#
|
338
|
|
-# Enable A20. This is at the very best an annoying procedure.
|
339
|
|
-# A20 code ported from SYSLINUX 1.52-1.63 by H. Peter Anvin.
|
340
|
|
-#
|
341
|
|
-
|
342
|
|
-A20_TEST_LOOPS = 32 # Iterations per wait
|
343
|
|
-A20_ENABLE_LOOPS = 255 # Total loops to try
|
344
|
|
-
|
345
|
|
-a20_try_loop:
|
346
|
|
-
|
347
|
|
- # First, see if we are on a system with no A20 gate.
|
348
|
|
-a20_none:
|
349
|
|
- call a20_test
|
350
|
|
- jnz a20_done
|
351
|
|
-
|
352
|
|
- # Next, try the BIOS (INT 0x15, AX=0x2401)
|
353
|
|
-a20_bios:
|
354
|
|
- movw $0x2401, %ax
|
355
|
|
- pushfl # Be paranoid about flags
|
356
|
|
- int $0x15
|
357
|
|
- popfl
|
358
|
|
-
|
359
|
|
- call a20_test
|
360
|
|
- jnz a20_done
|
361
|
|
-
|
362
|
|
- # Try enabling A20 through the keyboard controller
|
363
|
|
-a20_kbc:
|
364
|
|
- call empty_8042
|
365
|
|
-
|
366
|
|
- call a20_test # Just in case the BIOS worked
|
367
|
|
- jnz a20_done # but had a delayed reaction.
|
368
|
|
-
|
369
|
|
- movb $0xD1, %al # command write
|
370
|
|
- outb %al, $0x64
|
371
|
|
- call empty_8042
|
372
|
|
-
|
373
|
|
- movb $0xDF, %al # A20 on
|
374
|
|
- outb %al, $0x60
|
375
|
|
- call empty_8042
|
376
|
|
-
|
377
|
|
- # Wait until a20 really *is* enabled; it can take a fair amount of
|
378
|
|
- # time on certain systems; Toshiba Tecras are known to have this
|
379
|
|
- # problem.
|
380
|
|
-a20_kbc_wait:
|
381
|
|
- xorw %cx, %cx
|
382
|
|
-a20_kbc_wait_loop:
|
383
|
|
- call a20_test
|
384
|
|
- jnz a20_done
|
385
|
|
- loop a20_kbc_wait_loop
|
386
|
|
-
|
387
|
|
- # Final attempt: use "configuration port A"
|
388
|
|
-a20_fast:
|
389
|
|
- inb $0x92, %al # Configuration Port A
|
390
|
|
- orb $0x02, %al # "fast A20" version
|
391
|
|
- andb $0xFE, %al # don't accidentally reset
|
392
|
|
- outb %al, $0x92
|
393
|
|
-
|
394
|
|
- # Wait for configuration port A to take effect
|
395
|
|
-a20_fast_wait:
|
396
|
|
- xorw %cx, %cx
|
397
|
|
-a20_fast_wait_loop:
|
398
|
|
- call a20_test
|
399
|
|
- jnz a20_done
|
400
|
|
- loop a20_fast_wait_loop
|
401
|
|
-
|
402
|
|
- # A20 is still not responding. Try frobbing it again.
|
403
|
|
- #
|
404
|
|
- decb (a20_tries - setup_code)
|
405
|
|
- jnz a20_try_loop
|
406
|
|
-
|
407
|
|
- movw $(a20_err_msg - setup_code), %si
|
408
|
|
- call prtstr
|
409
|
|
-
|
410
|
|
-a20_die:
|
411
|
|
- hlt
|
412
|
|
- jmp a20_die
|
413
|
|
-
|
414
|
|
-a20_tries:
|
415
|
|
- .byte A20_ENABLE_LOOPS
|
416
|
|
-
|
417
|
|
-a20_err_msg:
|
418
|
|
- .ascii "linux: fatal error: A20 gate not responding!"
|
419
|
|
- .byte 13, 10, 0
|
420
|
|
-
|
421
|
|
- # If we get here, all is good
|
422
|
|
-a20_done:
|
423
|
|
- # Leave the idt alone
|
424
|
|
-
|
425
|
|
- # set up gdt
|
426
|
|
- xorl %eax, %eax # Compute gdt_base
|
427
|
|
- movw %ds, %ax # (Convert %ds:gdt to a linear ptr)
|
428
|
|
- shll $4, %eax
|
429
|
|
- addl $(bImage_gdt - setup_code), %eax
|
430
|
|
- movl %eax, (bImage_gdt_48+2 - setup_code)
|
431
|
|
- DATA32 lgdt %ds:(bImage_gdt_48 - setup_code) # load gdt with whatever is
|
432
|
|
- # appropriate
|
433
|
|
-
|
434
|
|
- # Switch to protected mode
|
435
|
|
- movl %cr0, %eax
|
436
|
|
- orb $CR0_PE, %al
|
437
|
|
- movl %eax, %cr0
|
438
|
|
-
|
439
|
|
- DATA32 ljmp *%ds:(code32 - setup_code)
|
440
|
|
-code32:
|
441
|
|
- .long 0x100000
|
442
|
|
- .word __BOOT_CS, 0
|
443
|
|
-
|
444
|
|
-# Here's a bunch of information about your current kernel..
|
445
|
|
-kernel_version: .ascii "Etherboot "
|
446
|
|
- .ascii VERSION
|
447
|
|
- .byte 0
|
448
|
|
-
|
449
|
|
-# This is the default real mode switch routine.
|
450
|
|
-# to be called just before protected mode transition
|
451
|
|
-default_switch:
|
452
|
|
- cli # no interrupts allowed !
|
453
|
|
- movb $0x80, %al # disable NMI for bootup
|
454
|
|
- # sequence
|
455
|
|
- outb %al, $0x70
|
456
|
|
- lret
|
457
|
|
-
|
458
|
|
-# This routine tests whether or not A20 is enabled. If so, it
|
459
|
|
-# exits with zf = 0.
|
460
|
|
-#
|
461
|
|
-# The memory address used, 0x200, is the int $0x80 vector, which
|
462
|
|
-# should be safe.
|
463
|
|
-
|
464
|
|
-A20_TEST_ADDR = 4*0x80
|
465
|
|
-
|
466
|
|
-a20_test:
|
467
|
|
- pushw %cx
|
468
|
|
- pushw %ax
|
469
|
|
- xorw %cx, %cx
|
470
|
|
- movw %cx, %fs # Low memory
|
471
|
|
- decw %cx
|
472
|
|
- movw %cx, %gs # High memory area
|
473
|
|
- movw $A20_TEST_LOOPS, %cx
|
474
|
|
- movw %fs:(A20_TEST_ADDR), %ax
|
475
|
|
- pushw %ax
|
476
|
|
-a20_test_wait:
|
477
|
|
- incw %ax
|
478
|
|
- movw %ax, %fs:(A20_TEST_ADDR)
|
479
|
|
- call delay # Serialize and make delay constant
|
480
|
|
- cmpw %gs:(A20_TEST_ADDR+0x10), %ax
|
481
|
|
- loope a20_test_wait
|
482
|
|
-
|
483
|
|
- popw %fs:(A20_TEST_ADDR)
|
484
|
|
- popw %ax
|
485
|
|
- popw %cx
|
486
|
|
- ret
|
487
|
|
-
|
488
|
|
-
|
489
|
|
-# This routine checks that the keyboard command queue is empty
|
490
|
|
-# (after emptying the output buffers)
|
491
|
|
-#
|
492
|
|
-# Some machines have delusions that the keyboard buffer is always full
|
493
|
|
-# with no keyboard attached...
|
494
|
|
-#
|
495
|
|
-# If there is no keyboard controller, we will usually get 0xff
|
496
|
|
-# to all the reads. With each IO taking a microsecond and
|
497
|
|
-# a timeout of 100,000 iterations, this can take about half a
|
498
|
|
-# second ("delay" == outb to port 0x80). That should be ok,
|
499
|
|
-# and should also be plenty of time for a real keyboard controller
|
500
|
|
-# to empty.
|
501
|
|
-#
|
502
|
|
-
|
503
|
|
-empty_8042:
|
504
|
|
- pushl %ecx
|
505
|
|
- movl $100000, %ecx
|
506
|
|
-
|
507
|
|
-empty_8042_loop:
|
508
|
|
- decl %ecx
|
509
|
|
- jz empty_8042_end_loop
|
510
|
|
-
|
511
|
|
- call delay
|
512
|
|
-
|
513
|
|
- inb $0x64, %al # 8042 status port
|
514
|
|
- testb $1, %al # output buffer?
|
515
|
|
- jz no_output
|
516
|
|
-
|
517
|
|
- call delay
|
518
|
|
- inb $0x60, %al # read it
|
519
|
|
- jmp empty_8042_loop
|
520
|
|
-
|
521
|
|
-no_output:
|
522
|
|
- testb $2, %al # is input buffer full?
|
523
|
|
- jnz empty_8042_loop # yes - loop
|
524
|
|
-empty_8042_end_loop:
|
525
|
|
- popl %ecx
|
526
|
|
-
|
527
|
|
-
|
528
|
|
-# Delay is needed after doing I/O
|
529
|
|
-delay:
|
530
|
|
- outb %al,$0x80
|
531
|
|
- ret
|
532
|
|
-
|
533
|
|
-# Descriptor tables
|
534
|
|
-#
|
535
|
|
-# NOTE: The intel manual says gdt should be sixteen bytes aligned for
|
536
|
|
-# efficiency reasons. However, there are machines which are known not
|
537
|
|
-# to boot with misaligned GDTs, so alter this at your peril! If you alter
|
538
|
|
-# GDT_ENTRY_BOOT_CS (in asm/segment.h) remember to leave at least two
|
539
|
|
-# empty GDT entries (one for NULL and one reserved).
|
540
|
|
-#
|
541
|
|
-# NOTE: On some CPUs, the GDT must be 8 byte aligned. This is
|
542
|
|
-# true for the Voyager Quad CPU card which will not boot without
|
543
|
|
-# This directive. 16 byte aligment is recommended by intel.
|
544
|
|
-#
|
545
|
|
- .balign 16
|
546
|
|
-bImage_gdt:
|
547
|
|
- .fill GDT_ENTRY_BOOT_CS,8,0
|
548
|
|
-
|
549
|
|
- .word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb)
|
550
|
|
- .word 0 # base address = 0
|
551
|
|
- .word 0x9A00 # code read/exec
|
552
|
|
- .word 0x00CF # granularity = 4096, 386
|
553
|
|
- # (+5th nibble of limit)
|
554
|
|
-
|
555
|
|
- .word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb)
|
556
|
|
- .word 0 # base address = 0
|
557
|
|
- .word 0x9200 # data read/write
|
558
|
|
- .word 0x00CF # granularity = 4096, 386
|
559
|
|
- # (+5th nibble of limit)
|
560
|
|
-bImage_gdt_end:
|
561
|
|
- .balign 4
|
562
|
|
-
|
563
|
|
- .word 0 # alignment byte
|
564
|
|
-bImage_idt_48:
|
565
|
|
- .word 0 # idt limit = 0
|
566
|
|
- .long 0 # idt base = 0L
|
567
|
|
-
|
568
|
|
- .word 0 # alignment byte
|
569
|
|
-bImage_gdt_48:
|
570
|
|
- .word bImage_gdt_end - bImage_gdt - 1 # gdt limit
|
571
|
|
- .long bImage_gdt_48 - setup_code # gdt base (filled in later)
|
572
|
|
-
|
573
|
|
- .section ".text16", "ax", @progbits
|
574
|
|
-prefix_exit:
|
575
|
|
- int $0x19 /* should try to boot machine */
|
576
|
|
-prefix_exit_end:
|
577
|
|
- .previous
|
578
|
|
-
|
579
|
|
-
|
580
|
|
- .org (PREFIXSIZE - 4)
|
581
|
|
-# Setup signature -- must be last
|
582
|
|
-setup_sig1: .word SIG1
|
583
|
|
-setup_sig2: .word SIG2
|
584
|
|
- /* Etherboot expects to be contiguous in memory once loaded.
|
585
|
|
- * The linux bImage protocol does not do this, but since we
|
586
|
|
- * don't need any information that's left in the prefix, it
|
587
|
|
- * doesn't matter: we just have to ensure that we make it to _start
|
588
|
|
- *
|
589
|
|
- * protected_start will live at 0x100000 and it will be the
|
590
|
|
- * the first code called as we enter protected mode.
|
591
|
|
- */
|
592
|
|
- .code32
|
593
|
|
-protected_start:
|
594
|
|
- /* Load segment registers */
|
595
|
|
- movw $__BOOT_DS, %ax
|
596
|
|
- movw %ax, %ss
|
597
|
|
- movw %ax, %ds
|
598
|
|
- movw %ax, %es
|
599
|
|
- movw %ax, %fs
|
600
|
|
- movw %ax, %gs
|
601
|
|
-
|
602
|
|
- /* Use the internal etherboot stack */
|
603
|
|
- movl $(_prefix_stack_end - protected_start + 0x100000), %esp
|
604
|
|
-
|
605
|
|
- pushl $0 /* No parameters to preserve for exit path */
|
606
|
|
- pushl $0 /* Use prefix exit path mechanism */
|
607
|
|
-
|
608
|
|
- jmp _start
|
609
|
|
-/*
|
610
|
|
- That's about it.
|
611
|
|
-*/
|