瀏覽代碼

Original axtls RSA code

tags/v0.9.3
Michael Brown 17 年之前
父節點
當前提交
6c2f0e1bf4
共有 1 個檔案被更改,包括 331 行新增0 行删除
  1. 331
    0
      src/crypto/axtls/rsa.c

+ 331
- 0
src/crypto/axtls/rsa.c 查看文件

@@ -0,0 +1,331 @@
1
+/*
2
+ *  Copyright(C) 2006 Cameron Rich
3
+ *
4
+ *  This library is free software; you can redistribute it and/or modify
5
+ *  it under the terms of the GNU Lesser General Public License as published by
6
+ *  the Free Software Foundation; either version 2.1 of the License, or
7
+ *  (at your option) any later version.
8
+ *
9
+ *  This library is distributed in the hope that it will be useful,
10
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
+ *  GNU Lesser General Public License for more details.
13
+ *
14
+ *  You should have received a copy of the GNU Lesser General Public License
15
+ *  along with this library; if not, write to the Free Software
16
+ *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17
+ */
18
+
19
+/**
20
+ * Implements the RSA public encryption algorithm. Uses the bigint library to
21
+ * perform its calculations.
22
+ */
23
+
24
+#include <stdio.h>
25
+#include <string.h>
26
+#include <time.h>
27
+#include <stdlib.h>
28
+#include "crypto.h"
29
+
30
+#ifdef CONFIG_BIGINT_CRT
31
+static bigint *bi_crt(RSA_CTX *rsa, bigint *bi);
32
+#endif
33
+
34
+void RSA_priv_key_new(RSA_CTX **ctx, 
35
+        const uint8_t *modulus, int mod_len,
36
+        const uint8_t *pub_exp, int pub_len,
37
+        const uint8_t *priv_exp, int priv_len
38
+#if CONFIG_BIGINT_CRT
39
+      , const uint8_t *p, int p_len,
40
+        const uint8_t *q, int q_len,
41
+        const uint8_t *dP, int dP_len,
42
+        const uint8_t *dQ, int dQ_len,
43
+        const uint8_t *qInv, int qInv_len
44
+#endif
45
+    )
46
+{
47
+    RSA_CTX *rsa_ctx;
48
+    BI_CTX *bi_ctx;
49
+    RSA_pub_key_new(ctx, modulus, mod_len, pub_exp, pub_len);
50
+    rsa_ctx = *ctx;
51
+    bi_ctx = rsa_ctx->bi_ctx;
52
+    rsa_ctx->d = bi_import(bi_ctx, priv_exp, priv_len);
53
+    bi_permanent(rsa_ctx->d);
54
+
55
+#ifdef CONFIG_BIGINT_CRT
56
+    rsa_ctx->p = bi_import(bi_ctx, p, p_len);
57
+    rsa_ctx->q = bi_import(bi_ctx, q, q_len);
58
+    rsa_ctx->dP = bi_import(bi_ctx, dP, dP_len);
59
+    rsa_ctx->dQ = bi_import(bi_ctx, dQ, dQ_len);
60
+    rsa_ctx->qInv = bi_import(bi_ctx, qInv, qInv_len);
61
+    bi_permanent(rsa_ctx->dP);
62
+    bi_permanent(rsa_ctx->dQ);
63
+    bi_permanent(rsa_ctx->qInv);
64
+    bi_set_mod(bi_ctx, rsa_ctx->p, BIGINT_P_OFFSET);
65
+    bi_set_mod(bi_ctx, rsa_ctx->q, BIGINT_Q_OFFSET);
66
+#endif
67
+}
68
+
69
+void RSA_pub_key_new(RSA_CTX **ctx, 
70
+        const uint8_t *modulus, int mod_len,
71
+        const uint8_t *pub_exp, int pub_len)
72
+{
73
+    RSA_CTX *rsa_ctx;
74
+    BI_CTX *bi_ctx = bi_initialize();
75
+    *ctx = (RSA_CTX *)calloc(1, sizeof(RSA_CTX));   /* reset to all 0 */
76
+    rsa_ctx = *ctx;
77
+    rsa_ctx->bi_ctx = bi_ctx;
78
+    rsa_ctx->num_octets = (mod_len & 0xFFF0);
79
+    rsa_ctx->m = bi_import(bi_ctx, modulus, mod_len);
80
+    bi_set_mod(bi_ctx, rsa_ctx->m, BIGINT_M_OFFSET);
81
+    rsa_ctx->e = bi_import(bi_ctx, pub_exp, pub_len);
82
+    bi_permanent(rsa_ctx->e);
83
+}
84
+
85
+/**
86
+ * Free up any RSA context resources.
87
+ */
88
+void RSA_free(RSA_CTX *rsa_ctx)
89
+{
90
+    BI_CTX *bi_ctx;
91
+    if (rsa_ctx == NULL)                /* deal with ptrs that are null */
92
+        return;
93
+
94
+    bi_ctx = rsa_ctx->bi_ctx;
95
+
96
+    bi_depermanent(rsa_ctx->e);
97
+    bi_free(bi_ctx, rsa_ctx->e);
98
+    bi_free_mod(rsa_ctx->bi_ctx, BIGINT_M_OFFSET);
99
+
100
+    if (rsa_ctx->d)
101
+    {
102
+        bi_depermanent(rsa_ctx->d);
103
+        bi_free(bi_ctx, rsa_ctx->d);
104
+#ifdef CONFIG_BIGINT_CRT
105
+        bi_depermanent(rsa_ctx->dP);
106
+        bi_depermanent(rsa_ctx->dQ);
107
+        bi_depermanent(rsa_ctx->qInv);
108
+        bi_free(bi_ctx, rsa_ctx->dP);
109
+        bi_free(bi_ctx, rsa_ctx->dQ);
110
+        bi_free(bi_ctx, rsa_ctx->qInv);
111
+        bi_free_mod(rsa_ctx->bi_ctx, BIGINT_P_OFFSET);
112
+        bi_free_mod(rsa_ctx->bi_ctx, BIGINT_Q_OFFSET);
113
+#endif
114
+    }
115
+
116
+    bi_terminate(bi_ctx);
117
+    free(rsa_ctx);
118
+}
119
+
120
+/**
121
+ * @brief Use PKCS1.5 for decryption/verification.
122
+ * @param ctx [in] The context
123
+ * @param in_data [in] The data to encrypt (must be < modulus size-11)
124
+ * @param out_data [out] The encrypted data.
125
+ * @param is_decryption [in] Decryption or verify operation.
126
+ * @return  The number of bytes that were originally encrypted. -1 on error.
127
+ * @see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
128
+ */
129
+int RSA_decrypt(RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data,
130
+        int is_decryption)
131
+{
132
+    int byte_size = ctx->num_octets;
133
+    uint8_t *block;
134
+    int i, size;
135
+    bigint *decrypted_bi, *dat_bi;
136
+
137
+    memset(out_data, 0, byte_size); /* initialise */
138
+
139
+    /* decrypt */
140
+    dat_bi = bi_import(ctx->bi_ctx, in_data, byte_size);
141
+#ifdef CONFIG_SSL_CERT_VERIFICATION
142
+    decrypted_bi = is_decryption ?  /* decrypt or verify? */
143
+            RSA_private(ctx, dat_bi) : RSA_public(ctx, dat_bi);
144
+#else   /* always a decryption */
145
+    decrypted_bi = RSA_private(ctx, dat_bi);
146
+#endif
147
+
148
+    /* convert to a normal block */
149
+    block = (uint8_t *)malloc(byte_size);
150
+    bi_export(ctx->bi_ctx, decrypted_bi, block, byte_size);
151
+
152
+    i = 10; /* start at the first possible non-padded byte */
153
+
154
+#ifdef CONFIG_SSL_CERT_VERIFICATION
155
+    if (is_decryption == 0) /* PKCS1.5 signing pads with "0xff"s */
156
+    {
157
+        while (block[i++] == 0xff && i < byte_size);
158
+        if (block[i-2] != 0xff)
159
+        {
160
+            i = byte_size;     /*ensure size is 0 */   
161
+        }
162
+    }
163
+    else                    /* PKCS1.5 encryption padding is random */
164
+#endif
165
+    {
166
+        while (block[i++] && i < byte_size);
167
+    }
168
+    size = byte_size - i;
169
+
170
+    /* get only the bit we want */
171
+    if (size > 0)
172
+    {
173
+        memcpy(out_data, &block[i], size);
174
+    }
175
+    
176
+    free(block);
177
+    return size ? size : -1;
178
+}
179
+
180
+/**
181
+ * Performs m = c^d mod n
182
+ */
183
+bigint *RSA_private(RSA_CTX *c, bigint *bi_msg)
184
+{
185
+#ifdef CONFIG_BIGINT_CRT
186
+    return bi_crt(c, bi_msg);
187
+#else
188
+    BI_CTX *ctx = c->bi_ctx;
189
+    ctx->mod_offset = BIGINT_M_OFFSET;
190
+    return bi_mod_power(ctx, bi_msg, c->d);
191
+#endif
192
+}
193
+
194
+#ifdef CONFIG_BIGINT_CRT
195
+/**
196
+ * Use the Chinese Remainder Theorem to quickly perform RSA decrypts.
197
+ * This should really be in bigint.c (and was at one stage), but needs 
198
+ * access to the RSA_CTX context...
199
+ */
200
+static bigint *bi_crt(RSA_CTX *rsa, bigint *bi)
201
+{
202
+    BI_CTX *ctx = rsa->bi_ctx;
203
+    bigint *m1, *m2, *h;
204
+
205
+    /* Montgomery has a condition the 0 < x, y < m and these products violate
206
+     * that condition. So disable Montgomery when using CRT */
207
+#if defined(CONFIG_BIGINT_MONTGOMERY)
208
+    ctx->use_classical = 1;
209
+#endif
210
+    ctx->mod_offset = BIGINT_P_OFFSET;
211
+    m1 = bi_mod_power(ctx, bi_copy(bi), rsa->dP);
212
+
213
+    ctx->mod_offset = BIGINT_Q_OFFSET;
214
+    m2 = bi_mod_power(ctx, bi, rsa->dQ);
215
+
216
+    h = bi_subtract(ctx, bi_add(ctx, m1, rsa->p), bi_copy(m2), NULL);
217
+    h = bi_multiply(ctx, h, rsa->qInv);
218
+    ctx->mod_offset = BIGINT_P_OFFSET;
219
+    h = bi_residue(ctx, h);
220
+#if defined(CONFIG_BIGINT_MONTGOMERY)
221
+    ctx->use_classical = 0;         /* reset for any further operation */
222
+#endif
223
+    return bi_add(ctx, m2, bi_multiply(ctx, rsa->q, h));
224
+}
225
+#endif
226
+
227
+#ifdef CONFIG_SSL_FULL_MODE
228
+/**
229
+ * Used for diagnostics.
230
+ */
231
+void RSA_print(const RSA_CTX *rsa_ctx) 
232
+{
233
+    if (rsa_ctx == NULL)
234
+        return;
235
+
236
+    printf("-----------------   RSA DEBUG   ----------------\n");
237
+    printf("Size:\t%d\n", rsa_ctx->num_octets);
238
+    bi_print("Modulus", rsa_ctx->m);
239
+    bi_print("Public Key", rsa_ctx->e);
240
+    bi_print("Private Key", rsa_ctx->d);
241
+}
242
+#endif
243
+
244
+#ifdef CONFIG_SSL_CERT_VERIFICATION
245
+/**
246
+ * Performs c = m^e mod n
247
+ */
248
+bigint *RSA_public(RSA_CTX *c, bigint *bi_msg)
249
+{
250
+    c->bi_ctx->mod_offset = BIGINT_M_OFFSET;
251
+    return bi_mod_power(c->bi_ctx, bi_msg, c->e);
252
+}
253
+
254
+/**
255
+ * Use PKCS1.5 for encryption/signing.
256
+ * see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
257
+ */
258
+int RSA_encrypt(RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len, 
259
+        uint8_t *out_data, int is_signing)
260
+{
261
+    int byte_size = ctx->num_octets;
262
+    int num_pads_needed = byte_size-in_len-3;
263
+    bigint *dat_bi, *encrypt_bi;
264
+
265
+    /* note: in_len+11 must be > byte_size */
266
+    out_data[0] = 0;     /* ensure encryption block is < modulus */
267
+
268
+    if (is_signing)
269
+    {
270
+        out_data[1] = 1;        /* PKCS1.5 signing pads with "0xff"'s */
271
+        memset(&out_data[2], 0xff, num_pads_needed);
272
+    }
273
+    else /* randomize the encryption padding with non-zero bytes */   
274
+    {
275
+        out_data[1] = 2;
276
+        get_random_NZ(num_pads_needed, &out_data[2]);
277
+    }
278
+
279
+    out_data[2+num_pads_needed] = 0;
280
+    memcpy(&out_data[3+num_pads_needed], in_data, in_len);
281
+
282
+    /* now encrypt it */
283
+    dat_bi = bi_import(ctx->bi_ctx, out_data, byte_size);
284
+    encrypt_bi = is_signing ? RSA_private(ctx, dat_bi) : 
285
+        RSA_public(ctx, dat_bi);
286
+    bi_export(ctx->bi_ctx, encrypt_bi, out_data, byte_size);
287
+    return byte_size;
288
+}
289
+
290
+/**
291
+ * Take a signature and decrypt it.
292
+ */
293
+bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len,
294
+        bigint *modulus, bigint *pub_exp)
295
+{
296
+    uint8_t *block = (uint8_t *)malloc(sig_len);
297
+    int i, size;
298
+    bigint *decrypted_bi, *dat_bi;
299
+    bigint *bir = NULL;
300
+
301
+    /* decrypt */
302
+    dat_bi = bi_import(ctx, sig, sig_len);
303
+    ctx->mod_offset = BIGINT_M_OFFSET;
304
+
305
+    /* convert to a normal block */
306
+    decrypted_bi = bi_mod_power2(ctx, dat_bi, modulus, pub_exp);
307
+
308
+    bi_export(ctx, decrypted_bi, block, sig_len);
309
+    ctx->mod_offset = BIGINT_M_OFFSET;
310
+
311
+    i = 10; /* start at the first possible non-padded byte */
312
+    while (block[i++] && i < sig_len);
313
+    size = sig_len - i;
314
+
315
+    /* get only the bit we want */
316
+    if (size > 0)
317
+    {
318
+        int len;
319
+        const uint8_t *sig_ptr = x509_get_signature(&block[i], &len);
320
+
321
+        if (sig_ptr)
322
+        {
323
+            bir = bi_import(ctx, sig_ptr, len);
324
+        }
325
+    }
326
+
327
+    free(block);
328
+    return bir;
329
+}
330
+
331
+#endif  /* CONFIG_SSL_CERT_VERIFICATION */

Loading…
取消
儲存