/************************************************************************** * r8169.c: Etherboot device driver for the RealTek RTL-8169 Gigabit * Written 2003 by Timothy Legge * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Portions of this code based on: * r8169.c: A RealTek RTL-8169 Gigabit Ethernet driver * for Linux kernel 2.4.x. * * Written 2002 ShuChen * See Linux Driver for full information * * Linux Driver Versions: * 1.27a, 10.02.2002 * RTL8169_VERSION "2.2" <2004/08/09> * * Thanks to: * Jean Chen of RealTek Semiconductor Corp. for * providing the evaluation NIC used to develop * this driver. RealTek's support for Etherboot * is appreciated. * * REVISION HISTORY: * ================ * * v1.0 11-26-2003 timlegge Initial port of Linux driver * v1.5 01-17-2004 timlegge Initial driver output cleanup * v1.6 03-27-2004 timlegge Additional Cleanup * v1.7 11-22-2005 timlegge Update to RealTek Driver Version 2.2 * * Indent Options: indent -kr -i8 ***************************************************************************/ #include "etherboot.h" #include "nic.h" #include #include #include #include "timer.h" #define drv_version "v1.6" #define drv_date "03-27-2004" #define HZ 1000 static u32 ioaddr; /* Condensed operations for readability. */ #define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr)) #define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr)) #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #undef RTL8169_DEBUG #undef RTL8169_JUMBO_FRAME_SUPPORT #undef RTL8169_HW_FLOW_CONTROL_SUPPORT #undef RTL8169_IOCTL_SUPPORT #undef RTL8169_DYNAMIC_CONTROL #define RTL8169_USE_IO /* media options _10_Half = 0x01, _10_Full = 0x02, _100_Half = 0x04, _100_Full = 0x08, _1000_Full = 0x10, */ static int media = -1; #if 0 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 20; #endif #if 0 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static int multicast_filter_limit = 32; #endif /* MAC address length*/ #define MAC_ADDR_LEN 6 /* max supported gigabit ethernet frame size -- must be at least (dev->mtu+14+4).*/ #define MAX_ETH_FRAME_SIZE 1536 #define TX_FIFO_THRESH 256 /* In bytes */ #define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */ #define RX_DMA_BURST 7 /* Maximum PCI burst, '6' is 1024 */ #define TX_DMA_BURST 7 /* Maximum PCI burst, '6' is 1024 */ #define ETTh 0x3F /* 0x3F means NO threshold */ #define EarlyTxThld 0x3F /* 0x3F means NO early transmit */ #define RxPacketMaxSize 0x0800 /* Maximum size supported is 16K-1 */ #define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */ #define NUM_TX_DESC 1 /* Number of Tx descriptor registers */ #define NUM_RX_DESC 4 /* Number of Rx descriptor registers */ #define RX_BUF_SIZE 1536 /* Rx Buffer size */ #define RTL_MIN_IO_SIZE 0x80 #define TX_TIMEOUT (6*HZ) #define RTL8169_TIMER_EXPIRE_TIME 100 //100 #define ETH_HDR_LEN 14 #define DEFAULT_MTU 1500 #define DEFAULT_RX_BUF_LEN 1536 #ifdef RTL8169_JUMBO_FRAME_SUPPORT #define MAX_JUMBO_FRAME_MTU ( 10000 ) #define MAX_RX_SKBDATA_SIZE ( MAX_JUMBO_FRAME_MTU + ETH_HDR_LEN ) #else #define MAX_RX_SKBDATA_SIZE 1600 #endif //end #ifdef RTL8169_JUMBO_FRAME_SUPPORT #ifdef RTL8169_USE_IO #define RTL_W8(reg, val8) outb ((val8), ioaddr + (reg)) #define RTL_W16(reg, val16) outw ((val16), ioaddr + (reg)) #define RTL_W32(reg, val32) outl ((val32), ioaddr + (reg)) #define RTL_R8(reg) inb (ioaddr + (reg)) #define RTL_R16(reg) inw (ioaddr + (reg)) #define RTL_R32(reg) ((unsigned long) inl (ioaddr + (reg))) #else /* write/read MMIO register */ #define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg)) #define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg)) #define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg)) #define RTL_R8(reg) readb (ioaddr + (reg)) #define RTL_R16(reg) readw (ioaddr + (reg)) #define RTL_R32(reg) ((unsigned long) readl (ioaddr + (reg))) #endif #define MCFG_METHOD_1 0x01 #define MCFG_METHOD_2 0x02 #define MCFG_METHOD_3 0x03 #define MCFG_METHOD_4 0x04 #define PCFG_METHOD_1 0x01 //PHY Reg 0x03 bit0-3 == 0x0000 #define PCFG_METHOD_2 0x02 //PHY Reg 0x03 bit0-3 == 0x0001 #define PCFG_METHOD_3 0x03 //PHY Reg 0x03 bit0-3 == 0x0002 static struct { const char *name; u8 mcfg; /* depend on RTL8169 docs */ u32 RxConfigMask; /* should clear the bits supported by this chip */ } rtl_chip_info[] = { { "RTL-8169", MCFG_METHOD_1, 0xff7e1880,}, { "RTL8169s/8110s", MCFG_METHOD_2, 0xff7e1880}, { "RTL8169s/8110s", MCFG_METHOD_3, 0xff7e1880},}; enum RTL8169_registers { MAC0 = 0x0, /* Ethernet hardware address. */ MAR0 = 0x8, /* Multicast filter. */ TxDescStartAddr = 0x20, TxHDescStartAddr = 0x28, FLASH = 0x30, ERSR = 0x36, ChipCmd = 0x37, TxPoll = 0x38, IntrMask = 0x3C, IntrStatus = 0x3E, TxConfig = 0x40, RxConfig = 0x44, RxMissed = 0x4C, Cfg9346 = 0x50, Config0 = 0x51, Config1 = 0x52, Config2 = 0x53, Config3 = 0x54, Config4 = 0x55, Config5 = 0x56, MultiIntr = 0x5C, PHYAR = 0x60, TBICSR = 0x64, TBI_ANAR = 0x68, TBI_LPAR = 0x6A, PHYstatus = 0x6C, RxMaxSize = 0xDA, CPlusCmd = 0xE0, RxDescStartAddr = 0xE4, ETThReg = 0xEC, FuncEvent = 0xF0, FuncEventMask = 0xF4, FuncPresetState = 0xF8, FuncForceEvent = 0xFC, }; enum RTL8169_register_content { /*InterruptStatusBits */ SYSErr = 0x8000, PCSTimeout = 0x4000, SWInt = 0x0100, TxDescUnavail = 0x80, RxFIFOOver = 0x40, LinkChg = 0x20, RxOverflow = 0x10, TxErr = 0x08, TxOK = 0x04, RxErr = 0x02, RxOK = 0x01, /*RxStatusDesc */ RxRES = 0x00200000, RxCRC = 0x00080000, RxRUNT = 0x00100000, RxRWT = 0x00400000, /*ChipCmdBits */ CmdReset = 0x10, CmdRxEnb = 0x08, CmdTxEnb = 0x04, RxBufEmpty = 0x01, /*Cfg9346Bits */ Cfg9346_Lock = 0x00, Cfg9346_Unlock = 0xC0, /*rx_mode_bits */ AcceptErr = 0x20, AcceptRunt = 0x10, AcceptBroadcast = 0x08, AcceptMulticast = 0x04, AcceptMyPhys = 0x02, AcceptAllPhys = 0x01, /*RxConfigBits */ RxCfgFIFOShift = 13, RxCfgDMAShift = 8, /*TxConfigBits */ TxInterFrameGapShift = 24, TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ /*rtl8169_PHYstatus */ TBI_Enable = 0x80, TxFlowCtrl = 0x40, RxFlowCtrl = 0x20, _1000bpsF = 0x10, _100bps = 0x08, _10bps = 0x04, LinkStatus = 0x02, FullDup = 0x01, /*GIGABIT_PHY_registers */ PHY_CTRL_REG = 0, PHY_STAT_REG = 1, PHY_AUTO_NEGO_REG = 4, PHY_1000_CTRL_REG = 9, /*GIGABIT_PHY_REG_BIT */ PHY_Restart_Auto_Nego = 0x0200, PHY_Enable_Auto_Nego = 0x1000, /* PHY_STAT_REG = 1; */ PHY_Auto_Neco_Comp = 0x0020, /* PHY_AUTO_NEGO_REG = 4; */ PHY_Cap_10_Half = 0x0020, PHY_Cap_10_Full = 0x0040, PHY_Cap_100_Half = 0x0080, PHY_Cap_100_Full = 0x0100, /* PHY_1000_CTRL_REG = 9; */ PHY_Cap_1000_Full = 0x0200, PHY_Cap_1000_Half = 0x0100, PHY_Cap_PAUSE = 0x0400, PHY_Cap_ASYM_PAUSE = 0x0800, PHY_Cap_Null = 0x0, /*_MediaType*/ _10_Half = 0x01, _10_Full = 0x02, _100_Half = 0x04, _100_Full = 0x08, _1000_Full = 0x10, /*_TBICSRBit*/ TBILinkOK = 0x02000000, }; enum _DescStatusBit { OWNbit = 0x80000000, EORbit = 0x40000000, FSbit = 0x20000000, LSbit = 0x10000000, }; struct TxDesc { u32 status; u32 vlan_tag; u32 buf_addr; u32 buf_Haddr; }; struct RxDesc { u32 status; u32 vlan_tag; u32 buf_addr; u32 buf_Haddr; }; /* The descriptors for this card are required to be aligned on 256 * byte boundaries. As the align attribute does not do more than 16 * bytes of alignment it requires some extra steps. Add 256 to the * size of the array and the init_ring adjusts the alignment. * * UPDATE: This is no longer true; we can request arbitrary alignment. */ /* Define the TX and RX Descriptors and Buffers */ #define __align_256 __attribute__ (( aligned ( 256 ) )) struct { struct TxDesc tx_ring[NUM_TX_DESC] __align_256; unsigned char txb[NUM_TX_DESC * RX_BUF_SIZE]; struct RxDesc rx_ring[NUM_RX_DESC] __align_256; unsigned char rxb[NUM_RX_DESC * RX_BUF_SIZE]; } *r8169_bufs; #define tx_ring r8169_bufs->tx_ring #define rx_ring r8169_bufs->rx_ring #define txb r8169_bufs->txb #define rxb r8169_bufs->rxb static struct rtl8169_private { void *mmio_addr; /* memory map physical address */ int chipset; int pcfg; int mcfg; unsigned long cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */ unsigned long cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */ struct TxDesc *TxDescArray; /* Index of 256-alignment Tx Descriptor buffer */ struct RxDesc *RxDescArray; /* Index of 256-alignment Rx Descriptor buffer */ unsigned char *RxBufferRing[NUM_RX_DESC]; /* Index of Rx Buffer array */ unsigned char *Tx_skbuff[NUM_TX_DESC]; } tpx; static struct rtl8169_private *tpc; static const u16 rtl8169_intr_mask = LinkChg | RxOverflow | RxFIFOOver | TxErr | TxOK | RxErr | RxOK; static const unsigned int rtl8169_rx_config = (RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift) | 0x0000000E; static void rtl8169_hw_PHY_config(struct nic *nic __unused); //static void rtl8169_hw_PHY_reset(struct net_device *dev); #define RTL8169_WRITE_GMII_REG_BIT( ioaddr, reg, bitnum, bitval )\ { \ int val; \ if( bitval == 1 ){ val = ( RTL8169_READ_GMII_REG( ioaddr, reg ) | (bitval< 0; i--) { // Check if the RTL8169 has completed writing to the specified MII register if (!(RTL_R32(PHYAR) & 0x80000000)) { break; } else { udelay(100); } // end of if( ! (RTL_R32(PHYAR)&0x80000000) ) } // end of for() loop } //================================================================= static int RTL8169_READ_GMII_REG(unsigned long ioaddr, int RegAddr) { int i, value = -1; RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16); udelay(1000); for (i = 2000; i > 0; i--) { // Check if the RTL8169 has completed retrieving data from the specified MII register if (RTL_R32(PHYAR) & 0x80000000) { value = (int) (RTL_R32(PHYAR) & 0xFFFF); break; } else { udelay(100); } // end of if( RTL_R32(PHYAR) & 0x80000000 ) } // end of for() loop return value; } #if 0 static void mdio_write(int RegAddr, int value) { int i; RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value); udelay(1000); for (i = 2000; i > 0; i--) { /* Check if the RTL8169 has completed writing to the specified MII register */ if (!(RTL_R32(PHYAR) & 0x80000000)) { break; } else { udelay(100); } } } static int mdio_read(int RegAddr) { int i, value = -1; RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16); udelay(1000); for (i = 2000; i > 0; i--) { /* Check if the RTL8169 has completed retrieving data from the specified MII register */ if (RTL_R32(PHYAR) & 0x80000000) { value = (int) (RTL_R32(PHYAR) & 0xFFFF); break; } else { udelay(100); } } return value; } #endif #define IORESOURCE_MEM 0x00000200 static int rtl8169_init_board(struct pci_device *pdev) { int i; // unsigned long mmio_end, mmio_flags unsigned long mmio_start, mmio_len; adjust_pci_device(pdev); mmio_start = pci_bar_start(pdev, PCI_BASE_ADDRESS_1); // mmio_end = pci_resource_end (pdev, 1); // mmio_flags = pci_resource_flags (pdev, PCI_BASE_ADDRESS_1); mmio_len = pci_bar_size(pdev, PCI_BASE_ADDRESS_1); // make sure PCI base addr 1 is MMIO // if (!(mmio_flags & IORESOURCE_MEM)) { // printf ("region #1 not an MMIO resource, aborting\n"); // return 0; // } // check for weird/broken PCI region reporting if (mmio_len < RTL_MIN_IO_SIZE) { printf("Invalid PCI region size(s), aborting\n"); return 0; } #ifdef RTL8169_USE_IO ioaddr = pci_bar_start(pdev, PCI_BASE_ADDRESS_0); #else // ioremap MMIO region ioaddr = (unsigned long) ioremap(mmio_start, mmio_len); if (ioaddr == 0) { printk("cannot remap MMIO, aborting\n"); return 0; } #endif tpc->mmio_addr = &ioaddr; /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 1000; i > 0; i--) if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; else udelay(10); // identify config method { unsigned long val32 = (RTL_R32(TxConfig) & 0x7c800000); if (val32 == (0x1 << 28)) { tpc->mcfg = MCFG_METHOD_4; } else if (val32 == (0x1 << 26)) { tpc->mcfg = MCFG_METHOD_3; } else if (val32 == (0x1 << 23)) { tpc->mcfg = MCFG_METHOD_2; } else if (val32 == 0x00000000) { tpc->mcfg = MCFG_METHOD_1; } else { tpc->mcfg = MCFG_METHOD_1; } } { unsigned char val8 = (unsigned char) (RTL8169_READ_GMII_REG(ioaddr, 3) & 0x000f); if (val8 == 0x00) { tpc->pcfg = PCFG_METHOD_1; } else if (val8 == 0x01) { tpc->pcfg = PCFG_METHOD_2; } else if (val8 == 0x02) { tpc->pcfg = PCFG_METHOD_3; } else { tpc->pcfg = PCFG_METHOD_3; } } /* identify chip attached to board */ for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--) if (tpc->mcfg == rtl_chip_info[i].mcfg) { tpc->chipset = i; goto match; } /* if unknown chip, assume array element #0, original RTL-8169 in this case */ DBG ( "PCI device: unknown chip version, assuming RTL-8169\n" ); DBG ( "PCI device: TxConfig = %#lX\n", ( unsigned long ) RTL_R32 ( TxConfig ) ); tpc->chipset = 0; return 1; match: return 0; } /************************************************************************** IRQ - Wait for a frame ***************************************************************************/ static void r8169_irq(struct nic *nic __unused, irq_action_t action) { int intr_status = 0; int interested = RxOverflow | RxFIFOOver | RxErr | RxOK; switch (action) { case DISABLE: case ENABLE: intr_status = RTL_R16(IntrStatus); /* h/w no longer present (hotplug?) or major error, bail */ if (intr_status == 0xFFFF) break; intr_status = intr_status & ~interested; if (action == ENABLE) intr_status = intr_status | interested; RTL_W16(IntrMask, intr_status); break; case FORCE: RTL_W8(TxPoll, (RTL_R8(TxPoll) | 0x01)); break; } } /************************************************************************** POLL - Wait for a frame ***************************************************************************/ static int r8169_poll(struct nic *nic, int retreive) { /* return true if there's an ethernet packet ready to read */ /* nic->packet should contain data on return */ /* nic->packetlen should contain length of data */ int cur_rx; unsigned int intr_status = 0; cur_rx = tpc->cur_rx; if ((tpc->RxDescArray[cur_rx].status & OWNbit) == 0) { /* There is a packet ready */ if (!retreive) return 1; intr_status = RTL_R16(IntrStatus); /* h/w no longer present (hotplug?) or major error, bail */ if (intr_status == 0xFFFF) return 0; RTL_W16(IntrStatus, intr_status & ~(RxFIFOOver | RxOverflow | RxOK)); if (!(tpc->RxDescArray[cur_rx].status & RxRES)) { nic->packetlen = (int) (tpc->RxDescArray[cur_rx]. status & 0x00001FFF) - 4; memcpy(nic->packet, tpc->RxBufferRing[cur_rx], nic->packetlen); if (cur_rx == NUM_RX_DESC - 1) tpc->RxDescArray[cur_rx].status = (OWNbit | EORbit) + RX_BUF_SIZE; else tpc->RxDescArray[cur_rx].status = OWNbit + RX_BUF_SIZE; tpc->RxDescArray[cur_rx].buf_addr = virt_to_bus(tpc->RxBufferRing[cur_rx]); } else printf("Error Rx"); /* FIXME: shouldn't I reset the status on an error */ cur_rx = (cur_rx + 1) % NUM_RX_DESC; tpc->cur_rx = cur_rx; RTL_W16(IntrStatus, intr_status & (RxFIFOOver | RxOverflow | RxOK)); return 1; } tpc->cur_rx = cur_rx; /* FIXME: There is no reason to do this as cur_rx did not change */ return (0); /* initially as this is called to flush the input */ } /************************************************************************** TRANSMIT - Transmit a frame ***************************************************************************/ static void r8169_transmit(struct nic *nic, const char *d, /* Destination */ unsigned int t, /* Type */ unsigned int s, /* size */ const char *p) { /* Packet */ /* send the packet to destination */ u16 nstype; u32 to; u8 *ptxb; int entry = tpc->cur_tx % NUM_TX_DESC; /* point to the current txb incase multiple tx_rings are used */ ptxb = tpc->Tx_skbuff[entry * MAX_ETH_FRAME_SIZE]; memcpy(ptxb, d, ETH_ALEN); memcpy(ptxb + ETH_ALEN, nic->node_addr, ETH_ALEN); nstype = htons((u16) t); memcpy(ptxb + 2 * ETH_ALEN, (u8 *) & nstype, 2); memcpy(ptxb + ETH_HLEN, p, s); s += ETH_HLEN; s &= 0x0FFF; while (s < ETH_ZLEN) ptxb[s++] = '\0'; tpc->TxDescArray[entry].buf_addr = virt_to_bus(ptxb); if (entry != (NUM_TX_DESC - 1)) tpc->TxDescArray[entry].status = (OWNbit | FSbit | LSbit) | ((s > ETH_ZLEN) ? s : ETH_ZLEN); else tpc->TxDescArray[entry].status = (OWNbit | EORbit | FSbit | LSbit) | ((s > ETH_ZLEN) ? s : ETH_ZLEN); RTL_W8(TxPoll, 0x40); /* set polling bit */ tpc->cur_tx++; to = currticks() + TX_TIMEOUT; while ((tpc->TxDescArray[entry].status & OWNbit) && (currticks() < to)); /* wait */ if (currticks() >= to) { printf("TX Time Out"); } } static void rtl8169_set_rx_mode(struct nic *nic __unused) { u32 mc_filter[2]; /* Multicast hash filter */ int rx_mode; u32 tmp = 0; /* IFF_ALLMULTI */ /* Too many to filter perfectly -- accept all multicasts. */ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; tmp = rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) & rtl_chip_info[tpc->chipset]. RxConfigMask); RTL_W32(RxConfig, tmp); RTL_W32(MAR0 + 0, mc_filter[0]); RTL_W32(MAR0 + 4, mc_filter[1]); } static void rtl8169_hw_start(struct nic *nic) { u32 i; /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 1000; i > 0; i--) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; else udelay(10); } RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W8(ETThReg, ETTh); /* For gigabit rtl8169 */ RTL_W16(RxMaxSize, RxPacketMaxSize); /* Set Rx Config register */ i = rtl8169_rx_config | (RTL_R32(RxConfig) & rtl_chip_info[tpc->chipset].RxConfigMask); RTL_W32(RxConfig, i); /* Set DMA burst size and Interframe Gap Time */ RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); RTL_W16(CPlusCmd, RTL_R16(CPlusCmd)); if (tpc->mcfg == MCFG_METHOD_2 || tpc->mcfg == MCFG_METHOD_3) { RTL_W16(CPlusCmd, (RTL_R16(CPlusCmd) | (1 << 14) | (1 << 3))); DBG ("Set MAC Reg C+CR Offset 0xE0: bit-3 and bit-14\n"); } else { RTL_W16(CPlusCmd, (RTL_R16(CPlusCmd) | (1 << 3))); DBG("Set MAC Reg C+CR Offset 0xE0: bit-3.\n"); } { //RTL_W16(0xE2, 0x1517); //RTL_W16(0xE2, 0x152a); //RTL_W16(0xE2, 0x282a); RTL_W16(0xE2, 0x0000); } tpc->cur_rx = 0; RTL_W32(TxDescStartAddr, virt_to_le32desc(tpc->TxDescArray)); RTL_W32(RxDescStartAddr, virt_to_le32desc(tpc->RxDescArray)); RTL_W8(Cfg9346, Cfg9346_Lock); udelay(10); RTL_W32(RxMissed, 0); rtl8169_set_rx_mode(nic); /* no early-rx interrupts */ RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000); RTL_W16(IntrMask, rtl8169_intr_mask); } static void rtl8169_init_ring(struct nic *nic __unused) { int i; tpc->cur_rx = 0; tpc->cur_tx = 0; memset(tpc->TxDescArray, 0x0, NUM_TX_DESC * sizeof(struct TxDesc)); memset(tpc->RxDescArray, 0x0, NUM_RX_DESC * sizeof(struct RxDesc)); for (i = 0; i < NUM_TX_DESC; i++) { tpc->Tx_skbuff[i] = &txb[i]; } for (i = 0; i < NUM_RX_DESC; i++) { if (i == (NUM_RX_DESC - 1)) tpc->RxDescArray[i].status = (OWNbit | EORbit) | RX_BUF_SIZE; else tpc->RxDescArray[i].status = OWNbit | RX_BUF_SIZE; tpc->RxBufferRing[i] = &rxb[i * RX_BUF_SIZE]; tpc->RxDescArray[i].buf_addr = virt_to_bus(tpc->RxBufferRing[i]); } } /************************************************************************** RESET - Finish setting up the ethernet interface ***************************************************************************/ static void r8169_reset(struct nic *nic) { int i; tpc->TxDescArray = tx_ring; tpc->RxDescArray = rx_ring; rtl8169_init_ring(nic); rtl8169_hw_start(nic); /* Construct a perfect filter frame with the mac address as first match * and broadcast for all others */ for (i = 0; i < 192; i++) txb[i] = 0xFF; txb[0] = nic->node_addr[0]; txb[1] = nic->node_addr[1]; txb[2] = nic->node_addr[2]; txb[3] = nic->node_addr[3]; txb[4] = nic->node_addr[4]; txb[5] = nic->node_addr[5]; } /************************************************************************** DISABLE - Turn off ethernet interface ***************************************************************************/ static void r8169_disable ( struct nic *nic __unused ) { int i; /* Stop the chip's Tx and Rx DMA processes. */ RTL_W8(ChipCmd, 0x00); /* Disable interrupts by clearing the interrupt mask. */ RTL_W16(IntrMask, 0x0000); RTL_W32(RxMissed, 0); tpc->TxDescArray = NULL; tpc->RxDescArray = NULL; for (i = 0; i < NUM_RX_DESC; i++) { tpc->RxBufferRing[i] = NULL; } } static struct nic_operations r8169_operations = { .connect = dummy_connect, .poll = r8169_poll, .transmit = r8169_transmit, .irq = r8169_irq, }; static struct pci_device_id r8169_nics[] = { PCI_ROM(0x10ec, 0x8169, "r8169", "RealTek RTL8169 Gigabit Ethernet"), PCI_ROM(0x16ec, 0x0116, "usr-r8169", "US Robotics RTL8169 Gigabit Ethernet"), PCI_ROM(0x1186, 0x4300, "dlink-r8169", "D-Link RTL8169 Gigabit Ethernet"), PCI_ROM(0x1737, 0x1032, "linksys-r8169", "Linksys RTL8169 Gigabit Ethernet"), }; PCI_DRIVER ( r8169_driver, r8169_nics, PCI_NO_CLASS ); /************************************************************************** PROBE - Look for an adapter, this routine's visible to the outside ***************************************************************************/ #define board_found 1 #define valid_link 0 static int r8169_probe ( struct nic *nic, struct pci_device *pci ) { static int board_idx = -1; static int printed_version = 0; int i, rc; int option = -1, Cap10_100 = 0, Cap1000 = 0; printf ( "r8169.c: Found %s, Vendor=%hX Device=%hX\n", pci->driver_name, pci->vendor, pci->device ); board_idx++; printed_version = 1; /* Quick and very dirty hack to get r8169 driver working * again, pre-rewrite */ if ( ! r8169_bufs ) r8169_bufs = malloc_dma ( sizeof ( *r8169_bufs ), 256 ); if ( ! r8169_bufs ) return 0; memset ( r8169_bufs, 0, sizeof ( *r8169_bufs ) ); /* point to private storage */ tpc = &tpx; rc = rtl8169_init_board(pci); /* Return code is meaningless */ /* Get MAC address. FIXME: read EEPROM */ for (i = 0; i < MAC_ADDR_LEN; i++) nic->node_addr[i] = RTL_R8(MAC0 + i); DBG ( "%s: Identified chip type is '%s'.\n", pci->driver_name, rtl_chip_info[tpc->chipset].name ); /* Print out some hardware info */ DBG ( "%s: %s at IOAddr %#hX, ", pci->driver_name, eth_ntoa ( nic->node_addr ), (unsigned int) ioaddr ); /* Config PHY */ rtl8169_hw_PHY_config(nic); DBG("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); if (tpc->mcfg < MCFG_METHOD_3) { DBG("Set PCI Latency=0x40\n"); pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0x40); } if (tpc->mcfg == MCFG_METHOD_2) { DBG("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); DBG("Set PHY Reg 0x0bh = 0x00h\n"); RTL8169_WRITE_GMII_REG(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0 } /* if TBI is not endbled */ if (!(RTL_R8(PHYstatus) & TBI_Enable)) { int val = RTL8169_READ_GMII_REG(ioaddr, PHY_AUTO_NEGO_REG); #ifdef RTL8169_HW_FLOW_CONTROL_SUPPORT val |= PHY_Cap_PAUSE | PHY_Cap_ASYM_PAUSE; #endif //end #define RTL8169_HW_FLOW_CONTROL_SUPPORT option = media; /* Force RTL8169 in 10/100/1000 Full/Half mode. */ if (option > 0) { printf(" Force-mode Enabled.\n"); Cap10_100 = 0, Cap1000 = 0; switch (option) { case _10_Half: Cap10_100 = PHY_Cap_10_Half; Cap1000 = PHY_Cap_Null; break; case _10_Full: Cap10_100 = PHY_Cap_10_Full; Cap1000 = PHY_Cap_Null; break; case _100_Half: Cap10_100 = PHY_Cap_100_Half; Cap1000 = PHY_Cap_Null; break; case _100_Full: Cap10_100 = PHY_Cap_100_Full; Cap1000 = PHY_Cap_Null; break; case _1000_Full: Cap10_100 = PHY_Cap_Null; Cap1000 = PHY_Cap_1000_Full; break; default: break; } RTL8169_WRITE_GMII_REG(ioaddr, PHY_AUTO_NEGO_REG, Cap10_100 | (val & 0xC1F)); //leave PHY_AUTO_NEGO_REG bit4:0 unchanged RTL8169_WRITE_GMII_REG(ioaddr, PHY_1000_CTRL_REG, Cap1000); } else { DBG ( "%s: Auto-negotiation Enabled.\n", pci->driver_name ); // enable 10/100 Full/Half Mode, leave PHY_AUTO_NEGO_REG bit4:0 unchanged RTL8169_WRITE_GMII_REG(ioaddr, PHY_AUTO_NEGO_REG, PHY_Cap_10_Half | PHY_Cap_10_Full | PHY_Cap_100_Half | PHY_Cap_100_Full | (val & 0xC1F)); // enable 1000 Full Mode // RTL8169_WRITE_GMII_REG( ioaddr, PHY_1000_CTRL_REG, PHY_Cap_1000_Full ); RTL8169_WRITE_GMII_REG(ioaddr, PHY_1000_CTRL_REG, PHY_Cap_1000_Full | PHY_Cap_1000_Half); //rtl8168 } // end of if( option > 0 ) // Enable auto-negotiation and restart auto-nigotiation RTL8169_WRITE_GMII_REG(ioaddr, PHY_CTRL_REG, PHY_Enable_Auto_Nego | PHY_Restart_Auto_Nego); udelay(100); // wait for auto-negotiation process for (i = 10000; i > 0; i--) { //check if auto-negotiation complete if (RTL8169_READ_GMII_REG(ioaddr, PHY_STAT_REG) & PHY_Auto_Neco_Comp) { udelay(100); option = RTL_R8(PHYstatus); if (option & _1000bpsF) { printf ("1000Mbps Full-duplex operation.\n"); } else { printf ("%sMbps %s-duplex operation.\n", (option & _100bps) ? "100" : "10", (option & FullDup) ? "Full" : "Half"); } break; } else { udelay(100); } // end of if( RTL8169_READ_GMII_REG(ioaddr, 1) & 0x20 ) } // end for-loop to wait for auto-negotiation process } else { udelay(100); printf ("%s: 1000Mbps Full-duplex operation, TBI Link %s!\n", pci->driver_name, (RTL_R32(TBICSR) & TBILinkOK) ? "OK" : "Failed"); } r8169_reset(nic); /* point to NIC specific routines */ nic->nic_op = &r8169_operations; nic->irqno = pci->irq; nic->ioaddr = ioaddr; return 1; } //====================================================================================================== /* static void rtl8169_hw_PHY_reset(struct nic *nic __unused) { int val, phy_reset_expiretime = 50; struct rtl8169_private *priv = dev->priv; unsigned long ioaddr = priv->ioaddr; DBG("%s: Reset RTL8169s PHY\n", dev->name); val = ( RTL8169_READ_GMII_REG( ioaddr, 0 ) | 0x8000 ) & 0xffff; RTL8169_WRITE_GMII_REG( ioaddr, 0, val ); do //waiting for phy reset { if( RTL8169_READ_GMII_REG( ioaddr, 0 ) & 0x8000 ){ phy_reset_expiretime --; udelay(100); } else{ break; } }while( phy_reset_expiretime >= 0 ); assert( phy_reset_expiretime > 0 ); } */ //====================================================================================================== static void rtl8169_hw_PHY_config(struct nic *nic __unused) { DBG("priv->mcfg=%d, priv->pcfg=%d\n", tpc->mcfg, tpc->pcfg); if (tpc->mcfg == MCFG_METHOD_4) { /* RTL8169_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1F, 0x0001 ); RTL8169_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1b, 0x841e ); RTL8169_WRITE_GMII_REG( (unsigned long)ioaddr, 0x0e, 0x7bfb ); RTL8169_WRITE_GMII_REG( (unsigned long)ioaddr, 0x09, 0x273a ); */ RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x1F, 0x0002); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01, 0x90D0); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x1F, 0x0000); } else if ((tpc->mcfg == MCFG_METHOD_2) || (tpc->mcfg == MCFG_METHOD_3)) { RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x1F, 0x0001); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x15, 0x1000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x18, 0x65C7); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0x0000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03, 0x00A1); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02, 0x0008); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01, 0x1020); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00, 0x1000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0x0800); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0x0000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0x7000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03, 0xFF41); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02, 0xDE60); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01, 0x0140); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00, 0x0077); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0x7800); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0x7000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0xA000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03, 0xDF01); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02, 0xDF20); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01, 0xFF95); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00, 0xFA00); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0xA800); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0xA000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0xB000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03, 0xFF41); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02, 0xDE20); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01, 0x0140); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00, 0x00BB); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0xB800); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0xB000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0xF000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x03, 0xDF01); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x02, 0xDF20); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x01, 0xFF95); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x00, 0xBF00); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0xF800); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0xF000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x04, 0x0000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x1F, 0x0000); RTL8169_WRITE_GMII_REG((unsigned long) ioaddr, 0x0B, 0x0000); } else { DBG("tpc->mcfg=%d. Discard hw PHY config.\n", tpc->mcfg); } } DRIVER ( "r8169/PCI", nic_driver, pci_driver, r8169_driver, r8169_probe, r8169_disable ); /* * Local variables: * c-basic-offset: 8 * c-indent-level: 8 * tab-width: 8 * End: */